## Measuring in centimetres and millimetres

1. Circle the length which is longer.
a 50 mm
OR
9.5 cm
c 425 mm
OR
6 cm
b 200 mm OR
100.5 cm
d. 950 cm
OR
2.45 m
2. Use a ruler to measure each of the lines shown below. Record your answers in the table. The first one has been done for you.

| a | 12 cm | 4 mm | 12.4 cm |
| :---: | :---: | :---: | :---: |
| b | 4 cm | 7 mm | 4.7 cm |
| c | 6 cm | 9 mm | 6.9 cm |
| d | 2 cm | 2 mm | 2.2 cm |
| e | 8 cm | 3 mm | 8.3 cm |
|  |  |  |  |

## Remember!

One millimetre is $\frac{1}{10}$ of a centimetre.
So $6 \mathrm{~mm}=0.6 \mathrm{~cm}$.
A line that measures 3 cm and 2 mm in length is 3 and $\frac{2}{10} \mathrm{~cm}$ or 3.2 cm .


3 Measure each of the following curved lines and record their lengths to 1 decimal place in the space provided.
a


17.1 cm

32.1 cm

How did you measure the length of these curved lines? Tell a classmate what you did. Did they use the same method? How many different ways can you think of to measure curved lines accurately?

## Iength and perimeter

1 Convert these measurements to the units shown.
a $3 \mathrm{~cm}, 6 \mathrm{~mm}=$ $\qquad$ 3.6 cm
b $9 \mathrm{~cm}, 3 \mathrm{~mm}=$ $\qquad$ 9.3 cm
c $10 \mathrm{~cm}, 8 \mathrm{~mm}=\underline{10.8 \mathrm{~cm}}$
d $120 \mathrm{~cm}, 4 \mathrm{~mm}=120.4$ cm
e $67500 \mathrm{~mm}=6750 \mathrm{~cm}$
f $835 \mathrm{~mm}=$ $\qquad$ cm
g $50 \mathrm{~cm}=$ $\qquad$ mm
h $173.5 \mathrm{~cm}=1735 \mathrm{~mm}$
2. Measure the perimeter of each shape in centimetres and record your answer in decimal notation, to the nearest millimetre, in the space provided.
a

b

C


$$
P=6 \times 2.2=132 \mathrm{~cm}
$$

$P=4 \times 3.6=14.4 \mathrm{~cm}$

$$
P=1.9 \times 8=15.2 \mathrm{~cm}
$$

d

e


$P=\underline{4+33+4+1.5=12.8 \mathrm{~cm}}$ $\qquad$ $P=14 \mathrm{~cm}$

3 Construct the following shapes.

| Equilateral triangle <br> with sides of 3.8 cm | Isosceles triangle with 2 <br> sides measuring 2.7 cm | Rectangle with sides of <br> 1.8 cm and 5.2 cm |
| :--- | :--- | :--- |

## Measuring length

1 Match the pairs of identical measurements. Rewrite each pair as a mathematical sentence. The first one is done for you.

2. Calculate the perimeter of each shape and record your answer in decimal notation, correct to the nearest centimetre.

## Remember!

1 cm is $\frac{1}{100}$ of a metre or 0.01 m .
So, 3 m and 4 cm is 3 and $\frac{4}{100} \mathrm{~m}$ or 3.04 m .
Likewise, 5 m and 38 cm is 5 and $\frac{38}{100} \mathrm{~m}$ or 5.38 m .
b


1572 cm
$\qquad$
d $\quad 105.42 \mathrm{~m}$

$P=298.86$

3 How many centimetres of wire would be needed to create matching pairs of these earrings? Record your answer in decimal notation, to the nearest millimetre.

C

$P=196.99 \mathrm{~m}$


Wire per earring: $\frac{72 \mathrm{~mm}}{44 \mathrm{~mm}}$
Wire per pair: $\qquad$ 144 mm
$\qquad$
b


Wire per earring: 111 mm
Wire per pair: $\qquad$ 222 mm

## Calculating perimeters

1 Two families went on driving holidays around the towns where they live. The distances they travelled are listed below. Calculate the total distance in kilometres each family travelled.
Rossi family: $7000 \mathrm{~m}, 13.5 \mathrm{~km}, 98250 \mathrm{~m}$ 118.75 km 355.25
Calculate the perimeter of each shape and record your answer in
decimal notation, correct to the nearest metre.

3 Lyn made a set of 8 placemats, with dimensions as shown in the picture.
a Calculate how much pink edging each placemat required.
$(26 \mathrm{~cm} \times 2)+(8 \mathrm{~cm} \times 4)+(145 \mathrm{~mm} \times 2)$
$=52 \mathrm{~cm}+32 \mathrm{~cm}+29 \mathrm{~cm}$
$=113 \mathrm{~cm}$ of pink edging required.

b How much pink edging was required for 8 placemats?
$113 \times 8=904 \mathrm{~cm}$ of pink edging required per 8 placemats.

C If Lyn bought an extra $10 \%$ in case she made a mistake, what length of pink edging did she buy?

$$
904+(b 1 \times 904)=904+90.4=994.4 \mathrm{~cm} \text { of pink edging. }
$$

## Working with different units

1 Use the appropriate equipment to measure the length of each of the following items to the level of accuracy indicated. Write your answers in decimal notation.
a Length of a pencil
b Width of your desk
c Height of a classmate
d Length of classroom
e Perimeter of a building
to the nearest mm
to the nearest mm
to the nearest cm
to the nearest cm
to the nearest cm
$\qquad$ cm Answers
$\qquad$ cm
$\qquad$ m
$\qquad$
$\qquad$ m
2. Calculate the perimeter of these squares and record your answers in decimal notation, correct to the nearest millimetre.
a

$\qquad$
b

$P=18276 \mathrm{~mm}$
C

$P=3010.4 \mathrm{~cm}$

Work with a classmate to describe a quick method that can be used when measuring or calculating the perimeter of squares. Record your answer below.

Multiply one side length by four.

Look at the shapes shown below:
A

B

C

a Write an estimate for the perimeter of each shape.
A $\qquad$ B $\qquad$ C $\qquad$
b Measure the perimeter of each shape accurately to the nearest millimetre and record your answer in decimal notation.
A $\qquad$ B $\qquad$ C $\qquad$ 10.6 cm

C List the shopes in order from shortest to longest perimeter.
B, A, C
(1) Convert these measurements to the units shown.

| a | $3350 \mathrm{~mm}=\frac{335}{\mathrm{~cm}}$ |
| :--- | :--- |
| c | $7725 \mathrm{~cm}=\frac{77.25}{} \mathrm{~m}$ |
| e | $123.5 \mathrm{~cm}=1235$ |
| mm |  |
| g | $17.25 \mathrm{~m}=1725 \mathrm{~cm}$ |


| b | $625 \mathrm{~mm}=\frac{62.5}{\mathrm{~cm}} \mathrm{~cm}$ |
| :--- | :--- |
| d | $18500 \mathrm{~m}=\frac{18.5}{\mathrm{~km}}$ |
| f | $87.3 \mathrm{~cm}=\frac{873}{\mathrm{~mm}}$ |
| h | $931 \mathrm{~km}=931000 \mathrm{~m}$ |

Calculate the perimeter of each shape shown below and record your answers accurately to three decimal places.

$P=66$
b cm

$P=11.81$
m

$P=6.642 \quad \mathrm{~km}$

How can you easily calculate the perimeter of shapes that have some or all of their sides the same length? Talk about what shapes this applies to.

A farmer wants to re-fence one of her paddocks. A diagram of the paddock is shown on the right. The fence she wants to construct is made of 5 wires with fence posts every 2 m and on every corner.
a How many kilometres of wire does the former need to fence the paddock?

b If the former orders an extra $25 \%$, what length of wire does she order?

$$
334 \mathrm{~m}+(0.25 \times 334 \mathrm{~m})=334+83.5=417.5 \mathrm{~m}
$$

C How many fence posts should the farmer order?
$\qquad$
$\frac{\frac{334}{2}+5=167+5}{}$ $=172$ posts need to be ordered.


## Tength in athletics

1 Complete each statement using $<,>$ or $=$.

| a | 1000 m | $<$ | 1.5 km | b | 500 m | $=$ | 0.5 km |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c | 94250 m | $>$ | 90 km | d | 65 mm | $<$ | 650 cm |
| e | 925 cm | $<$ | 10 m | $f$ | 19 km | $<$ | 190000 m |
| g | 56.5 km | $=$ | 56500 m | h | 30.25 km | $<$ | 300250 m |



Scale 1:1000
a Measure the length of the inside (A) and outside (F) running lanes as accurately as you can and record your answer in part b below.
b


Use the scale on the diagram to calculate how far athletes will run in two running lanes during the race.
inside (A) lane: diagram length (mm) 176 mm actual length (m) 176 m outside (F) lane: diagram length (mm) 204mmactual length (m) 204 m

C Has Barry marked out the track correctly? Will the race be a 'fair' race? Give a reason for your answer.

No. The race will not be fair, as runners have to run different lengths.
d How should the track be marked out so the 200 m race is 'fair'?
They should start from different positions.
e Indicate on the diagram the approximate starting positions for each athlete in a 'fair' 200 m race.

## Squares and triangles

1. Count the grid squares, or use a mental strategy, to determine the area of each triangle and rectangle.

$\qquad$ squares
c

b

$\qquad$ squares $\qquad$ 8 squares
d


4 squares
$\qquad$ squares $\qquad$ 6 squares $\qquad$ squares

2 Is there a relationship between the area of each triangle and the area of each rectangle? What is this relationship?
$Y_{\text {es }}$. Area of the triangle is equal to half the area of the rectangle.
$\qquad$
$\qquad$
3 Describe how you could calculate the area of a triangle without having to count grid squares.

$$
\text { Multiply the base by height by } \frac{1}{2}
$$

4 a Complete the rectangles around each triangle in red.
b Calculate, using mental strategies, the area of each rectangle and thus the area of each triangle.

area rectangle $=$ $\qquad$ 18 squares area triangle $=$ $\qquad$ 9 squares

## ii


area rectangle = $\qquad$ squares area triangle $=$ $\qquad$ 9 squares

## Australian area

This picture of Australia is drawn approximately to scale. Use the picture to help you answer the following questions.
(1) Which state/territory has the largest area?

2 Which state/territory has the smallest area? ACT.

3 List the states/territories in order from largest area to smallest area.
Western Australia, Queensland.
Northern Territory. South Australia, New South Wales,


Victoria, Tasmania, ACT
(4.) Complete the table by matching each area listed below to the most appropriate state or territory.

| $237629 \mathrm{~km}^{2}$ | $1852642 \mathrm{~km}^{2}$ |
| :--- | :--- |
| $2358 \mathrm{~km}^{2}$ | $2645615 \mathrm{~km}^{2}$ |
| $1420970 \mathrm{~km}^{2}$ | $90758 \mathrm{~km}^{2}$ |
| $809444 \mathrm{~km}^{2}$ | $1043514 \mathrm{~km}^{2}$ |

What is the total area of
Australia?

$$
8102930
$$

6 Which states/territories are larger in area than:

| State/territory | Area in $\mathrm{km}^{2}$ |
| :--- | :---: |
| Australian <br> Capital Territory | 2358 |
| New South Woles | 809444 |
| Northern Territory | 1420970 |
| Queensland | 1852642 |
| South Australia | 1043514 |
| Tasmania | 90758 |
| Victoria | 237629 |
| Western Australia | 2645615 |

a Texas, USA $678051 \mathrm{~km}^{2}$
b Switzerland
$41290 \mathrm{~km}^{2}$
All except ACT. Tasmania and Victoria
All except ACT
C Sahara Desert
$4619260 \mathrm{~km}^{2}$

## None

(7) Use the internet or another information source to find out the area, in square kilometres, of: Answers may vary.
a the Simpson Desert

| $176500 \mathrm{~km}^{2}$ |
| :---: |
| $19804 \mathrm{~km}^{2}$ |
| $344400 \mathrm{~km}^{2}$ |
| $34.6 \mathrm{~km}^{2}$ |

What area of Australia is populated? What percentage of the total area of Australia is this?
How does this compare to other countries in Europe or Asia?
Using Units of Measurement

## Search and rescue

On a one-day bushwalk in Wollemi National Park, three students have become separated from the main group. They have not returned by nightfall. A search of the area is to be made at first light. The map below shows the area to be searched. Each grid square represents one square kilometre ( $1 \mathrm{~km}^{2}$ ).


1. Place a dot at the following co-ordinates.
red team:
Jll, Hll, Hl3
$\begin{array}{ll}\text { blue team: } & \text { I8, G8, I11, G11 } \\ \text { yellow team: } & \text { F5, D5, F8 }\end{array}$ green team:

J8, F2, F8
Join the dots to find the search areas for each team. Colour each area the colour of its team.
(2) a Find the area, in square kilometres, that each team must cover.

| red team: | $\frac{2 \mathrm{~km}^{2}}{12 \mathrm{~km}^{2}}$ | blue team: | $6 \mathrm{~km}^{2}$ |
| :--- | :--- | :--- | :--- |
| green team: | yellow team: | $3 \mathrm{~km}^{2}$ |  |

b Mark on the map a fifth search area that covers 8 square kilometres.
C Estimate how many square kilometres of Wollemi National Park, south of the road leading to Mountain Lagoon, will remain unsearched.

3 You are the search coordinator. You have a team from the police search and rescue unit with a helicopter, another team of SES volunteers and a third team of members of the local community. Which search area do you give to each of these groups? Give reasons for your choices.

Members of the local community: area marked by F3, D5, F5 as small area, close to road.
Helicopter team: big area south of blue team. SES team: east of red team to cover remaining area.

1. Calculate the area of each triangle by first calculating the area of a rectangle.
A

B
11 m

$$
\text { Area }=\frac{1}{2}(6 \times 11)=\frac{1}{2}(66)=33 \mathrm{~cm}^{2}
$$

$$
\text { Area }=\frac{1}{2}(11 \times 22)=\frac{1}{2}(242)=121 \mathrm{~m}^{2}
$$

This map shows the Gibson Desert Nature Reserve in Western Australia near the Northern Territory border. A new ranger needs to plan several trips and wants to know the total area of the Nature Reserve.
a What is the scale on this map? 7: 25000000
b How many kilometres in the Gibson Desert Nature Reserve is 1 mm on this map?


C Use a ruler to measure the size of the Nature Reserve in millimetres.
length: 31 mm width: 48 mm
d Calculate the dimensions of the Gibson Desert Nature Reserve in kilometres.
length: 110.67 km width: $\underline{171.36 \mathrm{~km}}$
e Calculate the area of the Gibson Desert Nature Reserve in square kilometres.

$$
\text { Area }=18964.4 \mathrm{~km} 2
$$

$f$ Use the method above to help you calculate the area of the Mungilli Aboriginal lands, marked by a small brown rectangle.

$$
\text { Map area }=1.4 \mathrm{~cm} \times 1.1 \mathrm{~cm}=1.54 \mathrm{~cm}^{2}
$$

$$
\text { Area }=(14 \times 3.57) \times(11 \times 3.57)=49.98 \times 39.27=1962.72 \mathrm{~km}^{2}
$$

$\qquad$
$\qquad$

## Area in sport

## Boules pitch



1. Use a ruler and the given scale to calculate the dimensions of these sections of the boules (also called bocce or petanque) pitch. Calculate the following areas.
a The total pitch area.


## Fencing piste



2 Use a ruler and the given scale to calculate the dimensions of these sections of the fencing piste. Calculate the following areas.
a The total piste area.

b The centre area (between the two on-guard lines).

| drawing: | length $\frac{34 \mathrm{~mm}}{3.4 \mathrm{~m}} \quad$ | width17.5 mm <br> fencing piste: <br> length$\quad$ width 1.75 m |
| :--- | :--- | :--- | :--- | centre area =

(3) Which has the larger area, a fencing piste or a boules pitch?

A boules pitch.

## Area of surfaces

1 a Build the block tower below using small cubic centimetre blocks.
b Use your tower to identify the opposite surfaces. Use red, green and blue pencils to mark these opposite surfaces on the diagrams. The first one has been done for you.

C Place a piece of 1 cm grid paper over each surface of the rectangular prism you have built. Count the squares and record the area, in square centimetres ( $\mathrm{cm}^{2}$ ), in the table below.


| Red surface 1 | Area $=12 \mathrm{~cm}^{2}$ | Red surface 2 | Area $=12 \mathrm{~cm}^{2}$ |
| :--- | :--- | :--- | :--- |
| Green surface 1 | Area $=8 \mathrm{~cm}^{2}$ | Green surface 2 | Area $=8 \mathrm{~cm}^{2}$ |
| Blue surface 1 | Area $=6 \mathrm{~cm}^{2}$ | Blue surface 2 | Area $=6 \mathrm{~cm}^{2}$ |

d What do you notice about the area of the opposite surfaces?
They are the same.
e Calculate the total surface area of this rectangular prism by adding the areas of each of the 6 surfaces together.

$$
\text { Area }=52 \mathrm{~cm}^{2}
$$

a Build each of the block towers shown on the right. Identify the opposite surfaces. Use 1 cm grid paper to find the area of each coloured surface. Record these areas in the space provided.


| Red surface | $4 \mathrm{~cm}^{2}$ | Yellow surface | $8 \mathrm{~cm}^{2}$ |
| :--- | :---: | :--- | :--- |
| Green surface | $24 \mathrm{~cm}^{2}$ | Purple surface | $20 \mathrm{~cm}^{2}$ |
| Blue surface | $12 \mathrm{~cm}^{2}$ | Pink surface | $20 \mathrm{~cm}^{2}$ |

b Calculate the total surface area of each rectangular prism.

$$
\begin{array}{rlrl}
\text { Surface area } & =\square+\square+\square+\square+\square+\square & \text { Surface area } & =\square+\square+\square+\square+\square+\square \\
& =\frac{4+24+12}{40 \mathrm{~cm}^{2}} & & \\
& =\frac{20+20+8}{48 \mathrm{~cm}^{2}}
\end{array}
$$

## Surface area of rectangular prisms

1 Complete the statements.
a


Surface area $=\square+\square+\square+\square+\square+\square$
$=(2 \mathrm{x} \square)+(2 \mathrm{x} \square)+(2 \mathrm{x} \square)$
b


Surface area $=\square+\square+\square+\square+\square+\square$

$$
=(2 \mathrm{x} \square)+(2 \mathrm{x} \square)+(2 \mathrm{x} \square)
$$

C
Surface area $=\square+\square+\square+\square+\square+\square$

$$
=(2 \mathrm{x} \square)+(2 \mathrm{x} \square)+(2 \mathrm{x} \square)
$$

d


Surface orea $=\square+\square+\square+\square+\square+\square$

$$
=(2 \mathrm{x} \square)+(2 \mathrm{x} \square)+(2 \mathrm{x} \square)
$$

2 a Build each of the following rectangular prisms using cubic centimetre blocks. Identify the opposite sides. Find the area of each side using a piece of lcm grid paper and record this value in the space provided. Then find the total surface area of each rectangular prism.


| Red surface | $\frac{10 \mathrm{~cm}^{2}}{}$ | Yellow surface | $5 \mathrm{~cm}^{2}$ |
| :--- | :---: | :--- | :--- |
| Green surface | $\frac{15 \mathrm{~cm}^{2}}{}$ | Purple surface | $3 \mathrm{~cm}^{2}$ |
| Blue surface | $6 \mathrm{~cm}^{2}$ | Pink surface | $\frac{15 \mathrm{~cm}^{2}}{}$ |

b Calculate the total surface area of each rectangular prism.

$$
\begin{aligned}
\text { Surface area } & =\square+\square+\square+\square+\square+\square & \text { Surface area } & =\square+\square+\square+\square+\square+\square \\
& =\underline{15+15+10+10+6+6} & & =\underline{3+3+15+15+5+5} \\
& =\underline{62 \mathrm{~cm}^{2}} & & =\underline{46 \mathrm{~cm}^{2}}
\end{aligned}
$$

## Volume of block towers

1 Use the pictures to help you determine the volume of each rectangular prism. Write an estimate for each in the space.

Construct each rectangular prism and count how many cubic centimetre blocks were used. Record the volume of each in the space.
a

b

C

estimate: $\qquad$
volume:
d

estimate:
$\frac{12 \mathrm{~cm}^{3}}{12 \mathrm{~cm}^{3}}$ estimate:
volume: $\qquad$ volume:

## e


estimate: $\qquad$
volume: $\qquad$
estimate: $\qquad$
volume:
$24 \mathrm{~cm}^{3}$
f

g


| estimate: | $36 \mathrm{~cm}^{3}$ |
| :--- | :--- |
| volume: | $36 \mathrm{~cm}^{3}$ |

estimate:
$36 \mathrm{~cm}^{3}$

| estimate: | $\frac{24 \mathrm{~cm}^{3}}{24 \mathrm{~cm}^{3}}$ |
| :--- | :--- |
| volume: |  |

$\qquad$ $7 \mathrm{~cm}^{3}$

1. Calculate the volume of each rectangular prism by using repeated addition to help you count the cubes.
a


$$
\begin{aligned}
\text { volume } & =\frac{12}{12} \times \frac{12}{2} \\
& =\frac{24}{\mathrm{~cm}^{3}} \\
& =\frac{1}{24}
\end{aligned}
$$

b

volume $=$ $\qquad$

$$
=18 \times
$$

$$
=54 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
\text { volume } & =\frac{24}{24} \times \frac{24}{2} \\
& =\frac{48}{\mathrm{~cm}^{3}} \\
& =\frac{1}{2}
\end{aligned}
$$

C

d


$$
\begin{aligned}
\text { volume } & =\frac{36}{36} \times \frac{144}{5} \\
& =\frac{180}{\mathrm{~cm}^{3}} \\
& =\frac{1}{}
\end{aligned}
$$

Use cubic centimetre blocks to build and draw 2 rectangular prisms with a volume of 12 cubic centimetres ( $12 \mathrm{~cm}^{3}$ ). Draw the prisms below.



## Volume or capacity?

1. a Construct a frame which measures one cubic metre ( $1 \mathrm{~m}^{3}$ ).
b Work with a partner to measure the volume of a room in cubic metres. Explain in the space below how you did this. Include a diagram to help in your explanation.
Answers will vary.

Possible answer: measure the length, width \& height of room, multiply, then
subtract any part that
makes the room non-rectangular.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

The volume inside a container, or how much it holds, is called its capacity. Capacity is usually measured in millilitres ( mL ) or litres ( L ), but can also be measured using cubic units such as cubic centimetres ( $\mathrm{cm}^{3}$ ) or cubic metres $\left(\mathrm{m}^{3}\right)$.

2 Katrina stacked cubic centimetre blocks into two kitchen containers. Use the pictures to help you calculate their capacity: how many cubic centimetre blocks fitted into each container?
a

b


$$
\begin{aligned}
\text { volume } & =\frac{8}{8}+\frac{8}{4}+\underline{8}+8 \text { volume }
\end{aligned}=\frac{9}{9}+\frac{9}{4}+\frac{9}{4}+\frac{9}{}=36 \mathrm{~cm}^{3}
$$

## How does it stack up?

1 Obtain the containers listed in the table below and choose 3 others. How many cubic centimetre blocks do you think it will take to fill each container? Record your estimates in the table.
2. Work with a partner to fill each container with cubic centimetre blocks and count how many it takes to fill each one. Record your results in the table.

Answers will vary.

| Container | Estimate | Number of <br> blocks | Volume |
| :--- | :--- | :--- | :--- |
| Lunch box |  |  |  |
| Pencil case |  |  |  |
| Drinking glass |  |  |  |
| Empty con or jar |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Was it easier to estimate the capacity of some containers than others? Why?
It will be easier to estimate the capacity of rectangular objects, as students
know the rule, and also rigid objects as they won't change shape.
How did you fill your containers with blocks? Were some easier to fill than others?

Answers will vary.

5 Did you count each individual block or did you find a quicker way to count them? What was the quicker way?
$\qquad$
A quicker way would be to stack the cubes
in a block and then use multiplication.

Compare your answers to Question 5 with a classmate from another group.
Are their answers similar to yours?

## Cubic centimetres and millilitres

1. a Fill each of the containers below with cubic centimetre blocks and record its capacity, in cubic units, in the table.
b Use a measuring cup and water to determine the capacity of each container in millilitres and record this in the table. Answers will vary

| Container | Number of blocks <br> $\left(\mathrm{cm}^{3}\right)$ | Volume in millilitres <br> $(\mathrm{mL})$ |
| :--- | :---: | :---: |
| Lunch box |  |  |
| Plastic box |  |  |
| Small container |  |  |

C How do the values for the capacity in cubic centimetres and the capacity in millilitres compare? What do you notice about your answers?
They are the same magnitude. One millilitre is equal to one cubic centimetre.
$\qquad$
$\qquad$
d Complete the following statement:
The volume of one cubic centimetre block $\left(1 \mathrm{~cm}^{3}\right)$ is $\qquad$ as
the volume of one millilitre
( 1 mL ) at room temperature.
2 Peter bought this fish tank. It measures 175 cm across, 80 cm deep and 50 cm wide.
a


What volume, in cubic centimetres, does this fish tank occupy?
$700000 \mathrm{~cm}^{3}$

b If Peter fills his fish tank to the rim, how many millilitres of water has he used? How many litres is this?

$$
700000 \mathrm{ml}=700 \mathrm{~L} \text { has been used }
$$

## Volume of irregular solids

The volume of water that is displaced (moved) when an object is submerged is equivalent to the volume of the object. Use the relationship between cubic units and millilitres to help you.

1. a Obtain a measuring cup that holds 500 mL of liquid. Add 300 mL of water to it.
b Place each of these objects, and three of your own choice, into the measuring cup, one at a time. Record the volume of the water when the object is submerged. When you remove the object, check that the water level returns to 300 mL . If it doesn't, add water before inserting the next object. Answers will vary.

| Object | Volume <br> before | Volume <br> after | Volume <br> of water <br> displaced | Volume of <br> object ( $\mathrm{cm}^{3}$ ) |
| :--- | :--- | :--- | :--- | :--- |
| Matchbox cor | 300 mL |  |  |  |
| Lump of plasticine | 300 mL |  |  |  |
| Plastic figure | 300 mL |  |  |  |
|  | 300 mL |  |  |  |
|  | 300 mL |  |  |  |
|  | 300 mL |  |  |  |

C Calculate the volume of water that was displaced by each object and use this to find the volume, in cubic centimetres, of the objects. Complete the table.

Use the volume of water displaced to help you calculate the volume, in cubic centimetres, of the following objects.
a A plug

before
b A can of tuna

after

Before $=200 \mathrm{ml}$
After $=225 \mathrm{ml}$
Plug $=225-200=25 \mathrm{~cm}^{3}$

$$
\text { Before }=300 \mathrm{ml}
$$

$$
\text { After }=225 \mathrm{ml}
$$

can $=425-300=125 \mathrm{~cm}^{3}$

1 a Obtain a medicine cup that holds 40 mL of liquid. Add 30 mL of water to it.
b Place each of the objects in the table below, and three of your own choice, into the measuring cup, one at a time. Record the volume of the water when the object is submerged. When you remove the object, check that the water level returns to 30 mL . If it doesn't, add water before inserting the next object. Answers will vary.

| Object | Volume <br> before | Volume <br> after | Volume <br> of water <br> displaced | Volume of <br> object (cm $\left.{ }^{3}\right)$ |
| :--- | :---: | :---: | :---: | :---: |
| 20 c coin | 30 mL |  |  |  |
| Marble | 30 mL |  |  |  |
| Keyring | 30 mL |  |  |  |
|  | 30 mL |  |  |  |
|  | 30 mL |  |  |  |
|  | 30 mL |  |  |  |

C Calculate the volume of water displaced by each object and use this to find the volume, in cubic centimetres, of the objects. Complete the table.

Use the volume of water that was displaced to help you calculate the volume of the following objects in cubic centimetres.
a lump of plasticine

b necklace


after

$$
\text { Before }=15 \mathrm{~m} 1
$$

$$
\text { After }=27.5 \mathrm{ml}
$$

$$
\text { Necklace }=12.5 \mathrm{~cm}^{3}
$$

## Other volumes

1. The monthly water usage of the O'Brien family is shown in the table.
a What is a kilolitre?
 1000 litres.
b
Calculate the total volume, in kilolitres, of water used by the O'Brien family during this year. 292.527 kL.
c How many litres is this?
292527 L .
d Suggest a possible reason that the value for January is so low.

| Month | Water <br> usage <br> (kilolitres) |
| :--- | :---: |
| January | 14.9 |
| February | 26.25 |
| March | 27.655 |
| April | 27.009 |
| Mary | 28.56 |
| June | 27.8 |
| July | 28.045 |
| August | 27.84 |
| September | 20.95 |
| October | 21.8 |
| November | 20.65 |
| December | 21.068 |

$\qquad$
Perhaps the family were away or on holidays for part of January.

> Answers will vary.
e There was a large drop in the family's usage of water after August. Suggest a possible reason their water usage reduced at this time.

They stopped watering their garden because of increased rain in spring.


The engines of motorcycles and cars are often referred to by their capacity, expressed in cc. A motorcycle like that in the picture is said to have an 800 cc engine.
a What does 'cc' stand for?


Cubic centimetre.
b Use the internet or another source to find out which volume this measurement refers to. Write an answer in the space below.

This measurement refers to engine displacement, or the volume of the
cylinders of an internal combustion engine.

## Measuring the mass of objects

1 Convert these measurements to the units shown.

| a | $16500 \mathrm{~g}=$ |
| :--- | :--- |
| b | $11.5 \mathrm{~kg}=$ |
| c | $67500 \mathrm{~kg}=\frac{16.5}{11500} \mathrm{~kg}$ |
| d | $63.5 \mathrm{t}=$ |
| e | $172250 \mathrm{~g}=$ |
| f | $186 \mathrm{~kg}=$ |
| t |  |
| $\frac{172.25}{18500} \mathrm{~kg}$ |  |
| kg |  |
| c |  |

## Remember! <br> 1 kilogram = 1000 grams <br> AND <br> 1 tonne $=1000$ kilograms

Use a balance or an electronic scale to measure and record the mass of these objects, and 3 of your own choice, in decimal notation. Answers will vary

| Object | Mass (kg) |
| :--- | :--- |
| Large block |  |
| Pencil case and contents |  |
| Ball |  |
| Book |  |
| Piece of fruit |  |
| Calculator |  |
|  |  |
|  |  |
|  |  |

3. Pictured below are some different types of scales or balances. Each can only measure a specific mass range. Use the internet or other information sources to find out what range of masses these types of scales/balances can measure.
a

kitchen scales
Approx 0-5kg
b

bathroom scales
$\qquad$

digital balance

$$
\begin{aligned}
& \text { Approx } 0-500 \mathrm{~g} \\
& \hline
\end{aligned}
$$

d

weigh.bridge


## Finding the mass of small objects

(1) a Use a set of kitchen scales to measure the mass of the following items.

Record their mass as accurately as you can. Answers will vary.
a rubber band
tea bag
pencil
cube
b Was it possible to get an accurate reading of the mass of these objects? Why or why not?

Possible difficulties include reading errors, wind, faulty equipment and scale capacity.
c Use the kitchen scales to measure the mass of 25 of each item.
a rubber band
tea bag
pencil
cube
d Was it easier to accurately measure the mass of 25 of each object than only one of each object? Explain why.

Yes. Because it is heavier, hence less affected by small errors.

When measuring the mass of small objects it is often easier to measure many of them and use division to find the average mass of a single small object.

Calculate the average mass of each item. Round your answers as appropriate.

box of chocolates $=750 \mathrm{~g}$ 25 chocolates
mass of 1 chocolate

carton of eggs $=750 \mathrm{~g}$ 12 eggs
mass of 1 egg
$\qquad$


loaf of bread $=650 \mathrm{~g}$ 20 slices of bread mass of 1 slice | $\frac{650}{20}=32.5 \mathrm{~g}$ |
| :--- |


packet of soap $=375 \mathrm{~g}$
6 bars of soap

| mass of $\frac{175}{6}=62.5 \mathrm{~g}$ |
| :--- |


box of teabags $=200 \mathrm{~g}$ 100 teabags mass of 1 teabag
$\qquad$

set of pencils $=420 \mathrm{~g}$ 16 pencils $\begin{array}{r}\text { mass of } \frac{1}{\frac{420}{1}} 16=26.25 \mathrm{~g} \\ \hline\end{array}$

3 Look at your answers to Question 2. Does every object have the exact mass that has been calculated? Give a reason for your answer.
No (this is extremely unlikely). There is almost certainly

## Is it too heavy?

1. Calculate or estimate the mass of each load. Which of these loads would fit in a trailer that can carry 250 kg ? $\qquad$
a load 1: $95000 \mathrm{~g}, 36 \mathrm{~kg}, 45500 \mathrm{~g}$
b lood 2: $24500 \mathrm{~g}, 186 \mathrm{~kg}, 53000 \mathrm{~g}$
C load 3: $72 \mathrm{~kg}, 27000 \mathrm{~g}, 126000 \mathrm{~g}$
d load 4: $\quad 115000 \mathrm{~g}, 165 \mathrm{~kg}, 35500 \mathrm{~g}$

$$
\begin{aligned}
& \text { mass }=\underline{95+36+45.5=176.5} \\
& \text { mass }=\underline{24.5+186+53=263.5 \mathrm{~kg}} \\
& \text { mass }=\underline{72+27+126=225} \mathrm{~kg} \\
& \text { mass }=115+165+35.5=315.5 \mathrm{~kg}
\end{aligned}
$$

2. Find the total mass of the objects in each container. Write your answer in decimal notation.

$\qquad$ kg
C

## packing box


136.75
kg
b

8.75
kg
d


3 Read each scale and calculate the difference between the masses.

$\qquad$ g
b
 kg
C

504.315 t

## Mass of water

(1) What is the mass of 1 L of water? Write your prediction in the space I predict the mass of 1 L of water will be $\qquad$ 1 kg .
(2) Obtain a 250 mL measuring cup, a container that holds more than 2L and a set of kitchen scales. Measure the mass of the empty container and record it in the space below.
Mass of empty container $=\underline{\text { Answers will vary }}$
(3) Measure the mass of each volume of water listed
 in the table below. Record the results in the table.

| Volume of water | Mass of water <br> and container | Mass of <br> water |  | Mass of 1L <br> of water |
| :--- | :---: | :---: | :---: | :---: |
| 250 mL or 1 cup | Answers will vary | 250 g | Multiply by 4 | 1 kg |
| 500 mL or 2 cups | Answers will vary | 500 g | Multiply by 2 | 1 kg |
| 1L or 4 cups | Answers will vary | 1 kg |  | 1 kg |
| 2L or 8 cups | Answers will vary | 2 kg | Divide by 2 | 1 kg |

4. Subtract the mass of the empty container from the mass that you recorded. This will give you the mass of the water inside the container. Record these masses in the table.
(5) Multiply or divide the mass of water you have measured by the value in the table. This is the mass of lL of water. Record the answer in the final column of the table.

What do your results show?
That one millilitre of water is equal to one gram, and
one litre is equal to one kilogram.
(1) Use the internet or another information source to find out the accepted mass of 1 L of water.

Accepted mass of 1 L water $=$ $\qquad$ 1 kg .
Record the details about your information source in the space below:
Answers will vary
8 How do your results compare to the accepted mass of 1 L of water?

> Answers may vary, though should be close depending on accuracy of measurement.

## Using timelines

1 Use this timeline to answer the questions.

a On which dates are the following:
i Easter Sunday $\qquad$ April 4
ii Jewish New Year $\qquad$ September 9
iii beginning of Ramadan $\qquad$ Angust 11
iv Chinese New Year $\qquad$ 14
b In which months are no events listed?
March, May. July.
C Circle the event in each pair which occurs earliest in the year.
i Remembrance Day
OR
ANZAC DAY
ii Easter Sunday OR Ramadan
iii New Year's Dap OR Jewish New Year
iv Uustralia Day OR United Nations Day

2 Write the number of each of the events listed in the table onto the timeline.
The ANZAC Gallipoli compaign 1915

| Date | Event | Date | Event |
| :--- | :--- | :--- | :--- |
| Mar 4 | 1 Arrival at Lemnos Is. | Apr 25 | 2 ANZAC landing |
| Mary 4 | 3 Attack on Gaba Tepe | May 20 | $\mathbf{4}$ Brief truce to bury the fallen |
| Jun 29-30 | 5 Last Turkish attack | Aug 6-7 | $\mathbf{6}$ Attack on Lone Pine \& the Nek |
| Nov 27-28 | 7 The Great Blizzard | Dec 20 | $\mathbf{8}$ Evacuation completed |



Where are timelines used? Look in newspapers and magazines: are there any timelines?

1. a List 10 events from your life in the table and place these onto a timeline.

You may like to include things such as starting school, moving house, births of sisters and brothers and holidays. Answers will vary My life


| Date | Event | Date | Event |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

b
Write a question that can be answered using your timeline.
Ask a classmate to answer it. Answers will vary

Use this timeline to answer the questions.

a What were the dates of these conflicts and how long did each last?

| i World War I | $1914-1918,5$ years. |
| :--- | :--- |
| ii World War II | $1939-1945,7$ years. |
| iii Korean War | $1950-1953,4$ years. |
| iv Vietnam War | $1960-1975,16$ years. |

b. In which year was the World Wide Web released? How many years has it been going?

1991: 20 years.
Make up your own question about the above timeline. Ask a classmate to answer it.

Answers will vary.

## Using Units of Measurement

## Australian daylight saving time


(1) Write in the state and territory names on the map. Colour the states and territories that follow:

Eastern Daylight Saving Time
Eastern Standard Time
Central Daylight Saving Time Central Standard Time Western Daylight Saving Time Western Standard Time
pink
red
green
blue
orange
yellow
(2) If it is 3 p.m. in Darwin, NT, complete the map with the times in the other states and territories.

3 It is daylight saving. Complete these times.
a 0940 hrs in Sydney is 0910 hrs in Adelaide and 0640 hrs in Perth.
b 5:15 p.m. in Hobart is $3: 45 \mathrm{pm}$ in Darwin and $4: 15 \mathrm{pm}$ in Brisbane.
c 2030 hrs in Port Hedland is 2230 hrs in Cairns and 2330 hrs in Canberra.
d 2:05 a.m. in Cairns is 3:05 am in Melbourne and 1:05 am in Darwin.
e 0015 hrs in Canberra is 2315 hrs in Brisbane and 2115 hrs in Perth.
f 11:50 a.m. in Adelaide is 9:20 am in Port Hedland and 12:20 pm in Hobart.
4. Give some reasons that people like or dislike daylight saving.

Some people disilike it because it disturbs sleep, and it may increase energy use.
Some people like it because it gives more opportunities to spend time outside.
Which other countries have daylight saving? When does daylight saving start and end in those countries? When do countries in the northern hemisphere have daylight saving? Why?

## Working with daylight saving

(1) Complete these statements:

Daylight Saving Time begins in NSW, ACT, SA, VIC and TAS on the firstSunday in October at 2:00am in the morning. On this day the clocks are put forward and we $\qquad$ one hour.

Daylight Saving Time ends in NSW, ACT, SA, VIC and TAS on the first Sunday in April at $\qquad$ in the morning. On this day the clocks are put $\qquad$ back and we $\qquad$ one hour.
2. Use the internet or another information source to find out what is happening in Western Australia and Queensland about Daylight Saving. Write what you find in the space provided. In Western Australia, a vote was held on Daylight
Saving in 2009. The result was a "no" vote. In Queensland, a bill in Parliament to introduce Daylight Saving for the south-east of the state was not passed.

Suri is visiting her grandmother in Adelaide for the summer holidays. Her flight departs Brisbane at 0830 hrs and arrives in Adelaide at 1110 hrs Adelaide Daylight Saving Time.
a What time is it in Adelaide when Suri departs from Brisbane?

$$
0900 \mathrm{hrs}
$$

b What time is it in Brisbane when Suri arrives in Adelaide?
1040 hrs
C What is the time difference between Brisbane and Adelaide during daylight saving?

$$
\text { Adelaide is } 30 \mathrm{~min} \text { ahead. }
$$

4. Keith lives in Queensland and wants to phone his sister Lorraine who lives in Victoria. What time is it in Queensland if Keith calls Lorraine at 10.30 a.m. in Victoria?

9:30am

5 Malik watches each event listed below on pay TV where they are screened live. If Malik lives in Perth, what time is it when each of these events begins?
a Melbourne Cup, November in Melbourne at 3:00 pm 12:00pm
b Day-night cricket match, January in Brisbane at 1300 hrs 1100 hrs

C Indy car race finish, October in Queensland at 5:00 pm
3:00pm
d AFL Grand Final, Melbourne in September at 1430 hrs 1230 hrs
e Test match cricket, November in Hobart at 9:00 am

## Irain times and travel

Read the train timetable and answer the questions.
(1) What is the earliest time that you can catch a train from Narwee?
$\qquad$ hrs or 11:42am
(2) I missed the 1159 hrs train from Riverwood.
a What time does the next one arrive? 1209 hrs or 12:09pm
b How long would
I have to wait? 10 minutes
(3) I missed the 11:51 a.m. train from Bardwell Park.
a What time does the next train arrive? 1221 hrs or 12:21
b How long is the wait
between these two trains? 30 minutes
(4) Marcie catches the 12:36 p.m. train from Green Square.
a What time does she arrive at Town
Hall? 1253 hrs or 12:53pm
b How long was her journey? 17 minutes

| Station |  |  |  |
| :--- | :--- | :--- | :--- |
| East Hills | $11: 30$ | $11: 51$ | $12: 00$ |
| Panania | $11: 32$ | --- | $12: 02$ |
| Revesby | $11: 34$ | --- | $12: 04$ |
| Padstow | $11: 37$ | $11: 56$ | $12: 07$ |
| Riverwood | $11: 39$ | $11: 59$ | $12: 09$ |
| Narwee | $11: 42$ | ---- | $12: 12$ |
| Beverly Hills | $11: 44$ | ---- | $12: 14$ |
| Kingsgrove | $11: 47$ | $12: 05$ | $12: 17$ |
| Bexley North | $11: 49$ | ---- | $12: 19$ |
| Bardwell Park | $11: 51$ | ---- | $12: 21$ |
| Turrella | $11: 53$ | ---- | $12: 23$ |
| Wolli Creek | $11: 56$ | $12: 11$ | $12: 26$ |
| International Airport | $11: 58$ | $12: 13$ | $12: 28$ |
| Domestic Airport | $12: 01$ | $12: 16$ | $12: 31$ |
| Mascot | $12: 03$ | $12: 18$ | $12: 33$ |
| Green Square | $12: 06$ | $12: 21$ | $12: 36$ |
| Sydenham | ---- | ---- | ---- |
| Redfern | ---- | ---- | ---- |
| Central | $12: 11$ | $12: 26$ | $12: 41$ |
| Museum | $12: 13$ | $12: 28$ | $12: 43$ |
| St James | $12: 15$ | $12: 30$ | $12: 45$ |
| Circular Quay | $12: 19$ | $12: 34$ | $12: 49$ |
| Wynyard | $12: 21$ | $12: 36$ | $12: 51$ |
| Town Hall | $12: 23$ | $12: 38$ | $12: 53$ |

5. Edgar catches the 11:30 a.m. train from East Hills and gets off at Circular Quay.
a What time does he get to Circular Quay? 12:34 hrs or 12:34pm
b How long was his trip? 49 minutes
Jennifer catches the 11:51 a.m. train from East Hills and also gets off at Circular Quay.
a What time does Jennifer arrive at Circular Quay? 12:34 hrs or 12:34pm
b How long did her trip take? 43 minutes
C Was her trip longer or shorter than Edgar's? By how much?
Shorter, by six minutes.
d Give a reason why the trip may have been longer or shorter.
Because there were fewer stops, the trip was shorter.
