Numbers in the billions

Remember!

Zero (0) holds a place e.g. 120825305012.
Extra zeros in front of whole numbers are not necessary, e.g. write 107670 233, not 0107670233. There is a space between the billions and millions, millions and thousands, and thousands and ones when the number is written correctly, e.g. 5395012305695054.
(1) Write the number represented by the beads on each abacus.

a \qquad
$142073390 \quad 205$

b \qquad

Read the two numbers shown in Questions la and 1b to a classmate.
3 Draw beads on each empty abacus to represent the numbers.
a 128937082715

b 7073749209

Placing value in the billions

1．Find a 250 mL measuring cup and a packet of dried peas or lentils．Students＇answers will vary．
a Count out 100 of the dried peas and place them into the measuring cup．

What is the volume of the peas？ \qquad cup

b Use this value to calculate the volume in mL of：
i 1000 dried peas \qquad － ii 10000 dried peas \qquad
iii 100000 dried peas \qquad iv 1000000 dried peas \qquad

C i What is the volume in mL of 1 billion dried peas？
ii How many 2 L bottles of soft drink is this equivalent to？

Is there only one type of billion？Is the billion we use in Australia the same as in the United States or Europe？

Draw a line through each of the zeros that are not necessary in these whole numbers．
の \quad фゆ1 725712908
b \quad b 627008054
C 851007657410
d $\$ 81713921$
e 951052035
f \quad ¢54 218024
（3）Write each number using the correct spacing．

Use the internet or another source of information to estimate how many stars are in our galaxy，the Milky Way，and how many people live on Earth．

There are \qquad stors
in our galaxy．The population of the world is \qquad ．

Could you find an exact answer？Why is it only possible to give an estimate？

Number and Place Value

Batty about billions

(1) Write the numerals for each of these numbers.
a five billion, two hundred thousand 5000200000
b two hundred billion, one hundred and twelve million, sixty-four thousand and three \qquad _

C one hundred and twenty-one billion, six hundred and eighty million, seventy-two thousand, three hundred and ninety-eight
\qquad 121680072398

2 Write each number in words.
a $1528223 \ldots$ one million, five hundred and twenty eight thousand,
two hundred and twenty three
b 8156230510 \qquad eight billion, one hundred and fifty six million, two hundred and thirty thousand, five hundred and ten

C 830000820001 \qquad eight hundred and thirty billion, eight hundred and twenty thousand and one
(3) Rewrite each set of numbers from smallest to largest.
a $152181514,152918156,152946842,152435514$

b $18515351512,18513465292,18515354841,18516542715$

C $3604512155,3608156185,3604218816,3608812186$

(4) Match the place value of the numeral in bold by drawing a line to its equivalent in words.

Number and Place Value

```
BUSINESS FOR SALE
    $1.5m
FOR SALE
4 bdrm house $490K
TOTAL STOCK IN
COMPANY
worth $100 bill
TWO COLTS SOLD AT
YEARLING SALES
for $7.68m
```


WORLD'S RICHEST MAN
worth \$56.b
ONLINE MUSIC STORE SALES TOP 5B SONGS

SECRETARY NEEDED.
Local business, parttime. $\quad \$ 35 \mathrm{~K} \mathrm{p.a}$.

1 In this table, write the numbers shown in each newspaper clipping in the left-hand column and write the full numeral in the right-hand column. The first one has been done for you.

Abbreviation	Full numeral	Abbreviation	Full numeral
$\$ 1.5 \mathrm{~m}$	$\$ 1500000$	$\$ 6.9 \mathrm{~m}$	$\$ 6900000$
$\$ 490 \mathrm{~K}$	$\$ 490000$	$\$ 5.56$	$\$ 5500000000$
$\$ 100$ bill	$\$ 100000000000$	$\$ 56 \mathrm{~b}$	$\$ 56000000000$
$\$ 7.68 \mathrm{~m}$	$\$ 7680000$	$5 B$	5000000000
$\$ 695 \mathrm{~m}$	$\$ 695000000$	$\$ 35 \mathrm{~K}$	$\$ 35000$

(2) Write each of the following numbers in a shorter form.

a	\$12000 000000	\$12b	b	\$45000	\$45K
C	\$500 000000	\$500m	d	\$690 000	\$690K
e	\$7800 000	\$7.8m	f	\$ 9900000000	\$9.96

Investigate: When working with computers and other digital equipment such as cameras and mp3 players, we use the abbreviations MB, GB and TB.
a What do these abbreviations stand for?
MB-Megabyte, GB-Gigabyte, TB-Terabyte
b What size numbers do these symbols refer to?
Mega-million(I 000000), Giga-billion(I 000000000).
Tera-thousand billion or 'trillion'(1000000000000)

Addition of numbers to 5 digits

1. Use mental strategies to complete each of the following additions.

a	$47+73$	$=120$	b	$68+83$		151
C	$28+34$	62	d	$31+99$		130
e	$56+84$	140	f	$325+472$	$=$	797
g	$905+358$	$=1263$	h	$655+549$	=	1204
i	$729+623$	$=1352$	j	$263+913$	$=$	1176

Remember!

There are many ways that you can mentally add numbers together. Try:

- splitting the numbers into their place values
- rearranging the numbers to form groups of 10
- rounding the numbers to the nearest 10 or 100 .

2. Explain the mental strategy you used for Question 1 h .

Students' answers will vary.
\qquad
\qquad
3 Compare your answer to Question 2 with your classmates'. Explain a different mental strategy that can be used to answer Question lh.

Students' answers will vary.
\qquad
4. Calculate the answers to each of the following number sentences using the empty number line that is provided. Students' answers will vary.

5 A football club recorded the following details of how many people attended games in a season.
a How many people attended the team's games altogether?

$$
79424
$$

b Estimate the numbers of people for 2011 based on the figures in the table. Explain why you have given this estimate.

Year	People
2007	18787
2008	17673
2009	18673
2010	11475
2011	12816

Students' answers will vary.

Addition of larger numbers

(1) Find the sum of the following number sentences using a mental strategy.

a	$740+390$	1130	b	$450+590$	$=$	1040
C	$8090+2800$	10890	d	$1640+3700$		5340
e	$7700+4650$	12350		$8500+1580$		10080

Barry wore a pedometer to count the number of steps he took each day. He recorded these in a notebook, which is shown below.
a

What was the total number of steps that Barry took in this week?

67958
b Put the days in order, from the day with the smallest number of steps to the day with the largest number of steps.
Sunday, Saturday, Wednesday, Friday. Tuesday. Monday, Thursday

C Suggest a reason why the number of steps taken on Sunday is far fewer
 than on the other days.

Students' answers will vary.
\qquad
d Compare your answer for Question 2c with a classmate. What other reasons could explain why Barry took fewer steps on Sunday?

Students' answers will vary.
\qquad

Find the total.
a 5301 $+2354$
b $\quad 8067$
C $\quad 8038$
$+\begin{array}{r}8352 \\ 16390\end{array}$
d. 4747

$$
+\frac{8276}{13023}
$$

$+9557$

$$
\begin{aligned}
& \begin{array}{r}
89068 \\
+94072 \\
\hline 183140
\end{array} \\
& \text { f } \begin{array}{r}
79587 \\
+76806 \\
\hline 156393
\end{array} \\
& \text { g } \quad 34474 \\
& \text { h } 29205 \\
& \begin{array}{r}
41838 \\
\hline 76312
\end{array} \\
& \begin{array}{r}
34189 \\
\hline 63394
\end{array}
\end{aligned}
$$

Number and Place Value

Focus on addition

(1) Using an appropriate mental strategy, calculate the total for each addition.

a	$536+802$	=	1338	b	$254+326$	=	580
C	$546+781$	=	1327	d	$864+765$	=	1629
e	$4711+4425$	=	9136	f	$4818+8490$	=	13308
g	$5073+9938$	=	15011	h	$8136+2861$	$=$	10997

Find the sum.
a 4094
$+\begin{array}{r}5636 \\ \hline 9730\end{array}$
b $\quad 9264$
C $\quad 1856$
d $\quad 5937$
3772
9937
$\begin{array}{r}7734 \\ \hline 13362\end{array}$

$$
+\begin{array}{r}
4303 \\
20177
\end{array}
$$

3. The V8 Supercars are often moved by plane in 'stacks' as shown in the picture. The masses of the 'stacks' that were moved by this aircraft were $3518 \mathrm{~kg}, 3307 \mathrm{~kg}$, $3213 \mathrm{~kg}, 3290 \mathrm{~kg}, 2272 \mathrm{~kg}$ and 3290 kg .
What was the total mass of V8 Supercars on this aircraft? Show your working.

18890 kg

How many V8 Supercar teams are there? How many cars does each team have? How many 'stacks' would be needed for all these $V 8$ Supercars? What would their combined mass be?
(1) Using appropriate mental strategies, solve the following.

a	75-39	$=36$	b	42-16	=	26	C	65-34		31
d	42-27	15		840-803	$=$	37	f	443-116		327
g	859-139	720	h	588-508	$=$	80	i	444-415	$=$	29

(2) Solve each of the following subtractions using the empty number line to help. a 8452-3541 = 4911
b $6470-4328=2142$
c $3548-2449=1099$

(3) Felicity's USB drive can hold 2834 picture files. She has recently loaded 1709 files onto her empty USB drive. How many more can she add before it is full?
\qquad 1125
\qquad
\qquad
\qquad
\qquad
4. Complete the following subtractions by filling in the blanks.
a $\begin{array}{r}893 \\ -\quad 427 \\ \hline 466\end{array}$
b $\begin{array}{r}6 \\ -\quad 43 \\ -\quad 05 \\ \hline 218\end{array}$
C $\begin{array}{r}851 \\ -\quad 34 \\ \hline 5044\end{array}$
d. $\begin{array}{r}959 \\ -\quad 5 \quad 2 \quad 2 \\ \hline 437\end{array}$

5 A subtraction question has been worked out below. Explain what has been done incorrectly and find the correct solution to the question.

$$
\begin{array}{r}
784042 \\
-59090 \\
\hline 25052
\end{array}
$$

The 4 should have taken a 1 from the zero to the left before subtracting the 9 .
Use the internet or other information sources to find out the data storage capacity of different devices, such as a DVD, CD-ROM, mp3 player, mobile phone or SD card. Approximately how many photographs can you fit on each of these devices? What will this depend upon?

Subtraction of larger numbers

1 Use a mental strategy to find the difference between the following numbers.
a 910-130 = 780 b 720-120 = $\underline{600 ~ c ~ 4300-3000=1300 ~}$
d $9500-8100=1400$
e $8500-7200=\underline{1300} \mathrm{f} 5100-4200=\underline{900}$
g 9500-7700 $=\underline{1800}$
h 9800-5800 $=\underline{4000}$ i $3900-2700=\underline{1200}$
Calculate the answer to each subtraction.
a 6894
$-\begin{array}{r}4605 \\ \hline 2289\end{array}$
b 7641
C 4238
d 7681
-5255
$-\begin{array}{r}3126 \\ 1112\end{array}$
-6635
e $\begin{array}{r}96265 \\ -31584 \\ \hline 64681\end{array}$
f $\begin{array}{r}88502 \\ - \\ -46940 \\ 41562\end{array}$
g. $\begin{array}{r}59402 \\ -58518 \\ \hline 884\end{array}$
h $\begin{array}{r}81460 \\ -62454 \\ \hline 19006\end{array}$
(Write 5 subtraction sentences or algorithms that all have an answer of 1382.

> Students' answers will vary.
4. Lin has $\$ 7846$ in her bank account. If she purchases a car for $\$ 5999$, how much money remains in her account?
$\$ 1847$

5

Investigate: Write down two 4-digit numbers. Find the difference when the larger number is subtracted from the smaller number. Repeat this using other 4-digit numbers. What happens when you subtract a larger number from a smaller one?

The answer is a negative number. that is, it is less than zero

Remember!

It's important to estimate the answer before you subtract. This way you can tell if your answer is reasonable. Estimate by:

- rounding the numbers first, using only the 2nd or 3 rd highest place values
- splitting the number into its place values
- subtracting each place value to find the estimate.
(1) a Estimate the answers to these subtractions. Write your estimates in the table.
b Use a calculator to check your estimates.

	Subtractions	Estimate	Calculator answer
i	$9026-4924=$	Students' answers will vary.	4102
ii	$92399-53399=$		39000
iii	$817719-694013=$		123706
iv	$6956243-4868971=$		2087272

2
Describe to a classmate the mental strategy that you used to estimate Question lb iv. Write down this strategy.

Students' answers will vary.

Find the answers to the following questions. Show your working in the space provided.
a A pool holds 17562 L of water. If 12866 L has already been put into the pool, how much water still needs to be added?
b A large truck can carry 60000 kg of freight. If 32642 kg has been loaded onto the truck, how much more can be put onto this truck?

C The Melbourne Cricket Ground can hold up to 100000 people. At a recent cricket game the

Subtraction strategies

1. Complete each subtraction using the most appropriate strategy.

a	8049-2878	5171	b	9942-8415	$=$	1527
C	8460-5122	3338	d	9542-2062	$=$	7480
e	4918-1481	3437	f	4712-3740	$=$	972

2. What strategy did you use to answer Question lc? Why did you choose this strategy?

Students' answers will vary.

3 Compare your answer to Question 2 with your classmates'. Describe a different strategy that can be used to work out the answer to Question lc.

Students' answers will vary.
4. Complete the following subtractions and then check your answer by completing the inverse operation on a separate piece of paper.
a 62951
$-\frac{58946}{4005}$
b 69056
C 58140
$-\begin{array}{r}44514 \\ \hline 24542\end{array}$
-25654
d 87003 e 37337 f 99286

$$
-\begin{array}{r}
22150 \\
64853
\end{array}-\frac{16838}{20499} \quad-\frac{49780}{49506}
$$

Remember!

The inverse operation to subtraction is addition.
For example:

$$
-\underline{25620}+\underline{25620}
$$

5 The Australian wheat industry usually produces around 25000 kilotonnes of wheat each year. However, because of the drought, only 9800 kilotonnes were produced in 2008. What is the difference between these amounts?

15200 kilotonnes

Addition and subtraction

(1) Use a mental strategy to calculate the answer to each question.

Find the answers.
a 3789
$+\begin{array}{r}676 \\ 4465\end{array}$
b $\quad 30587$
C 6745
d 22756
$-\begin{array}{r}999 \\ \hline 5746\end{array}$
$-\begin{array}{r}1152 \\ 21604\end{array}$

3 The electricity meter is read at John's house in January, March, June and September. The latest readings are shown in the table.
a How many kilowatt hours did John's family use between March and June?
\qquad
1675 kilowatt hours
b How much electricity did they use

Month	Electricity reading (kilowatt hours)
Jonuary	29756
March	31542
June	33217
September	34826
Jonuary	36563
March	38517

3691 kilowatt hours

C How much electricity did they use in the 12 months, from January to January?

\qquad 6807 kilowatt hours
\qquad
d In which 3-month period did they use the least electricity?
June to September (1609 kilowatt hours)

Sum or difference?

1. Read each of the following worded problems and draw lines to match each of them to the correct working.
 does she have left?

2 A national community association wants to sell 400000 badges in order to raise money for much needed equipment and research. In the first week of the campaign, they sell 84702 badges.
a At the end of the first week, how many badges still need to be sold?

315298 badges
b If the group continues to sell the same number of badges each week, how long will it take them to
 sell all 400 000?

They will sell the final badge in the $5^{\text {th }}$ week.

Use the internet to try to find out how many badges were sold across Australia during Legacy Week? How many Australians did not buy a Legacy badge?
(1) a An aircraft arrives in Sydney with 13267 kg of fuel on board It is re-fuelled so that it contains 89752 kg of fuel in its tanks and departs for Hong Kong. How much fuel was loaded in Sydney? 76485 kg
b The plane arrives in Hong Kong with 15423 kg of fuel remaining. How much fuel was used on the flight to Hong Kong?
\qquad

$$
74329 \mathrm{~kg}
$$

C The plane is re-fuelled again with 69791 kg of fuel loaded into it. The plane then returns to Sydney, arriving with 12893 kg in its tanks. How much fuel was used on the return trip to Sydney?
\qquad 72321 kg

Dalia is a hairdresser who wishes to work from home. She lists the costs of starting her own hairdressing business.

Item	Cost
Equipment (e.g. furniture and appliances)	$\$ 6280$
Consumables (e.g. shampoo, gel and colour dyes)	$\$ 2150$
Hair-core products (to sell to customers)	$\$ 890$
Advertising and printing	$\$ 545$
Monthly operating costs (e.g. phone, extra consumables and electricity)	$\$ 362$

a How much money will Dalia need to start her own hairdressing business?
$\$ 10227$
b If Dalia makes $\$ 792$ profit in her first month, estimate how long it will take her to pay for the items she bought when starting her business.
\qquad

Mental multiplication

(1) Complete the following multiplications using appropriate mental strategies. Hint: You can work out 48×7 by adding 40×7 to 8×7.
a $48 \times 7=$ \qquad
b $41 \times 5=\underline{205}$
C $55 \times 4=$ \qquad
d $63 \times 9=$ \qquad e $40 \times 7=\underline{280}$
f $36 \times 6=$ \qquad 216
g $80 \times 10=\underline{800}$
h $73 \times 2=$ \qquad 146 i $89 \times 5=$ 445

7
(2) Round the numbers in the following questions and use them to help you estimate the answer. The first one has been done for you.

	Question	Rounding	Estimate
a	$21 \times 79=$	20×80	1600
b	$31 \times 47=$	30×50	1500
c	$48 \times 11=$	50×10	500
d	$33 \times 31=$	30×30	900
e	$94 \times 19=$	90×20	1800
f	$63 \times 50=$	60×50	3000
g	$89 \times 68=$	90×70	6300

40Each picture taken on Seth's digital camera is approximately 3 MB in size. This weekend he took 187 photogrophs.
a Would these photos all fit on a CD that holds 600 MB ?

b How much space would be left on the CD?

$$
39 \mathrm{MB}
$$

c How many extra photos could Seth burn onto this same CD?

1-digit multiplication

The split method of multiplication

Multiply each place value separately, starting with the largest, then add the parts to give the total answer.

	4	2	3	
\times		5		
	0	0	0	5×400
	1	0	0	5×20
	1	5	5×3	
2	1	1	5	Add these for the final answer

1. Complete the following multiplication tables grid.

\times	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$
$\mathbf{3}$	6	9	12	21	24	30
$\mathbf{5}$	10	15	20	35	40	50
$\mathbf{7}$	14	21	28	49	56	70

2. Complete the following multiplications.
a

b
\times

C $\quad 448$
$\times \begin{array}{r}9 \\ 4032\end{array}$
d
982
\times
$\begin{array}{r}4 \\ \hline 3928\end{array}$
e

584
$\times \quad 6$
3504

f

135
$\times \quad 7$
945

g $\quad 764$
8
$\times 6112$
h
493
\times
5

Anton's shopping basket has 9 cans of fruit salad. Each can has a mass of 440 g . What is the total mass of the cans in Anton's shopping basket?
\qquad 3960 g \qquad
\qquad
\qquad
\qquad

2-digit multiplication

68×45 is really 68×5 plus 68×40

$46 \quad 8$
$\times \quad 5$
340

36
$\times \quad 4$
$\times \quad 4$
$27 \quad 2 \quad 0$

$$
+\begin{array}{r}
12 \\
\hline
\end{array}
$$

Below is a short-hand way of recording your work.

1

$$
\text { a } \begin{array}{r}
92 \\
\times \quad 28 \\
\hline 2576
\end{array}
$$

b

C

d
99
\times 36
3564
e

44
$\times \quad 1 \quad 6$
704

f

g $\begin{array}{r}18 \\ \times \quad 37 \\ \hline 666\end{array}$
h $\begin{array}{r}62 \\ \times \quad 63 \\ \hline 3906\end{array}$

Max's dad is a used car salesman. Last week he sold 13 cars for $\$ 5990$ each, 15 cars for $\$ 8490$ each and 19 cars for $\$ 3850$ each. What was the total value of the cars that Max's dad sold?

$$
\$ 278370
$$

(1) Draw a picture to help you explain what $25 \div 4$ means.

Students' answers will vary.
(2) Write the following using numerals and mathematical symbols.
a seventy-two divided by two $72 \div 2$
b four thousand, nine hundred and eighty divided by one hundred

$$
4980 \div 100
$$

C eleven thousand, three hundred and ten divided by four hundred and twenty

$$
11310 \div 420
$$

(3) Write each of these mathematical statements in words.
a $84 \div 10$ eighty four divided by ten
b $\quad 827 \div 18$ \qquad eight hundred and twenty seven divided by eighteen

Use the numbers displayed in the box to help answer Questions 4 and 5 .

881781	99	1825	48	153	1969	
5913	1855	949	60		124	
123635960						
123	2350	9146	270	84	83	865
130	1327					

(4) a Place a blue box around the numbers that can be divided evenly by 5 .
b What do all of these numbers have in common?
They end in 5 or 0
(5) a Place a black triangle around the numbers that can be divided evenly by 10 .
b What do all these numbers have in common?
They end in 0
C Are all the numbers that can be divided evenly by 10 also able to be divided evenly by 5 ? Explain why or why not.

$$
\text { Yes, because } 10 \text { can also be divided evenly by } 5
$$

Division notation

(1) Fill in the blanks in the following division statements.
a $97 \div 5$ or
$5 \longdiv { 9 7 }$
b $18 \div 3$ or $3 \longdiv { 1 8 }$
c $77 \div 10$ or $1 0 \longdiv { 7 7 }$ d $53 \div 11$ or $1 1 \longdiv { 5 3 }$
(2) Complete the following divisions.

a $12 \div 4=$	3	b $22 \div 11=$	2
C $14 \div 7=$	2	d $50 \div 10=$	5
e $1 2 \longdiv { 8 4 } =$	7	f $3 \longdiv { 7 6 } =$	25.33
g $6 \longdiv { 5 9 } =$	9.83	h $5 \longdiv { 7 3 } =$	14.6

Division can be represented as a mathematical statement in 3 different ways. For example: 'Divide 524 into 4 equal groups' can be written as:
$524 \div 4$ or
$4 \longdiv { 5 2 4 }$ or $\frac{524}{4}$.
(3) A group of 9 people went out for dinner to a restaurant and decided to split the bill evenly. If the total bill was $\$ 414$, how much did each person need to pay?
(4) The local Rotary club is running a car trial to raise money. Each car can hold 4 people comfortably. If 70 people are interested in attending, what is the minimum number of cars that would be needed?
\qquad
18
\qquad

Krishna has invited 37 people to a short meeting at his house. He buys soft drinks that are in packs of 4. How many packs will Krishna need to buy to ensure that everyone will get a drink?

10

6
Joe is inviting 15 people to his house to watch the football final. Each pizza from Giuseppe's Pizzeria has 8 slices. If each person eats 3 slices of pizza, how many pizzas does Joe need to order?

6
\qquad
\qquad
\qquad

Circle the numbers that are divisible by 4.

| (12) | (712) | 51660 | 7638 | 23 | | 4916 | 647 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (9040 | 60 | (28) | 83865 | 851 | 40 | |

Circle the numbers that are divisible by 8.

29	827	8600	88368	5971	44	39963	
	918	(3192)	6966	182	(88)	25680	280

(3) Fill in the blanks to complete the following statements.
or $2 \longdiv { 1 3 }$ or $\frac{13}{2}$
or $6 \longdiv { 2 6 }$ or $\frac{26}{6}$
a $38 \div 11$ or
$1 1 \longdiv { 3 8 }$ or $\frac{38}{11}$
b $13 \div 2$ or
$2 \longdiv { 1 3 }$ or
13

\square
80
80

d $26 \div 6$ or
$6 \longdiv { 2 6 }$ or
c $80 \div 8$ or
$8 \longdiv { 8 0 }$ or $\frac{80}{8}$
d $\underline{26} \div 6$ or
正
$\frac{93}{7}$
$9 \quad 15 \div 4$ or $4 \longdiv { 1 5 }$ or $\frac{15}{4} h \sqrt{46} \div 5$ or $5 \longdiv { 4 6 }$ or $\frac{46}{5}$
4

Investigate: What answer do you get if you put the numbers into a calculator the wrong way around? Use the examples from Question 3. Put them into a calculator the right and wrong way around. Record the results in the table and write any observations about the answers. The first one has been done for you.
a) If you divide a smaller number by a larger number. the answer is less than (b) If you divide a larger number by a smaller

Correct input	Incorrect input
$38 \div 11=3.4545$	$11 \div 38=0.2894$
$13 \div 2=6.5$	$2 \div 13=0.1538$
$30 \div 8=10$	$8 \div 80=0.1$
$26 \div 6=4.3333$	$6 \div 26=0.2308$
$77 \div 5=15.4$	$5 \div 77=0.0649$
$93 \div 7=13.2857$	$7 \div 93=0.0753$
$15 \div 4=3.75$	$4 \div 15=0.2667$
$46 \div 5=9.2$	$5 \div 46=0.1087$

number. the answer is greater than 1 c) Multiplying the answer from the correct input by the answer from the incorrect input gives I
Rhys uses a calculator to find the answer to $8 \longdiv { 2 6 8 7 2 }$. The answer that the calculator gives is 0.000297707 . Is this the correct answer? What has Rhys done? Which operation has Rhys used?
No. Rhys has put the numbers into the calculator the
wrong way around.

Division down the drain

1 Solve the following divisions using appropriate mental strategies.

2. Suri has the choice of buying 5 lolly frogs for 50 c or 12 lolly frogs for $\$ 1$. Which is the better deal? Give a reason for your answer.

12 lolly frogs for \$1; cheaper per frog

3 The tap in Hermione's bathroom fills the bath at a rate of 12 L of water per minute.
a How many litres of water will be in the bath after 3 minutes?

36 L

\qquad

b How long will it take to fill the bath if it can hold 132 L of water?
\qquad
\qquad
C If Hermione returns to the bathroom 10 minutes after she turns on the tap, will she be in time to stop the water from flooding the room? Explain your answer.

Yes, because at that time the bath would still have
room for 12 more litres.
d If Hermione turned the tap on so that it was filling the bath at 15 L of water per minute, how many minutes would she be able to leave the tap running before it floods the bathroom? Explain your answer.

After 8 minutes, the bath would contain 120 L , but if left running for another minute, it would overflow (after 8 minutes, 48 seconds)
(1) Use mental strategies to determine which of the numbers in the box are divisible by:

a	2	$84,26,70,48,58,94,404,820,800$
b	4	$84,48,404,820,800$
C	5	$70,35,820,975,800,315$
d	10	$70,820,800$
e	20	820,800
f	25	975,800
g	100	800

84	26	51
70	99	48
35	58	94
404	820	975
807	171	800
521	101	315

(2) Solve the following divisions.
a $2 \longdiv { 2 3 6 } =$ \qquad b $5 \longdiv { 1 0 5 } =$ \qquad c $8 \longdiv { 8 2 1 } = \underline { 1 0 2 . 6 2 5 }$
d
$9 \longdiv { 8 8 2 } = \quad 9 8$
e $7 \longdiv { 8 8 6 } = \underline { 1 2 6 . 5 7 1 4 }$
f $8 \longdiv { 9 6 0 } =$ \qquad
$g \quad 6 \longdiv { 8 0 9 } = \underline { 1 3 4 . 8 3 }$
h $4 \longdiv { 1 2 4 } = \underline { 3 1 } \quad i$
$3 \longdiv { 9 4 8 } = 3 1 6$
j $2 \longdiv { 9 4 9 } = 4 7 4 . 5$
k
$7 \longdiv { 5 5 4 } = \underline { 7 9 . 1 4 2 9 } \quad 1$
$1 9 \longdiv { 9 0 2 } = 1 0 0 . 2 2$
$m 3 \longdiv { 4 3 9 } = \underline { 1 4 6 . 3 3 } n$
$6 \longdiv { 9 1 6 } = \underline { 1 5 2 . 6 7 }$

- $4 \longdiv { 3 8 2 } =$
95.5
(3) A jigsaw puzzle has 750 pieces. If 3 children construct the jigsaw, placing an equal number of pieces each, how many pieces did each of them place?

4. A team of 8 cyclists is riding 768 km from Melbourne to Adelaide to raise money for charity. If they each cover an equal distance, how many kilometres does each of them ride?

96 km
\qquad
\qquad
\qquad

Number and Place Value

(1) Solve these divisions.

a $186 \div 9$	$=\underline{20.67}$	b $258 \div 8$	$=\underline{32.25}$	c $792 \div 6=\underline{132}$	
d $935 \div 7$	$=\underline{133.57}$	e $\frac{448}{4}$	$=\underline{112}$	f $\frac{673}{5}$	$=\underline{134.6}$
g $\frac{912}{3}$	$=\underline{304}$	h $\frac{599}{2}$	$=\underline{299.5}$	i $9 \longdiv { 1 1 7 }$	$=\underline{13}$
j $6 \longdiv { 3 9 2 }$	$=\underline{65.33}$	k $5 \longdiv { 8 9 0 }$	$=\underline{178}$	l	$3 \longdiv { 2 2 8 }$

2. Tony, Raj and Kim are planning a holiday together, which is going to cost \$9566. If they share the cost equally, how much will they each have to pay?
\qquad

$$
\$ 3188.67
$$

 500000 people attend an event.
a There is a chair for every person who attends. How many truck loads of chairs are needed, if each truck can carry 250 chairs?

$$
2000 \text { truck loads }
$$

b If there are 20 trucks to complete this task, how many loads would each truck need to carry?

$$
100 \text { loads per truck }
$$

A specialty chocolate shop that makes and hand wraps chocolates can produce 9120 chocolates in a week.
a If the store operates 6 days a week, approximately how many chocolates are made each day?

$$
1520 \text { per day }
$$

b A chocolate maker can make and wrap 80 chocolates in an hour. How many hours are spent making chocolates each day?

C Is it likely that the store is open for this long each day? Suggest how it is possible that it can produce so many chocolates each day.

The store has more than I chocolate maker

1. Write an estimate for each of the following divisions. Indicate with a tick (\mathcal{J}) whether the answer will be a whole number or a whole number with a remainder.

	Estimate
$786 \div 2$	Students answers will vary.
$\frac{220}{8}$	
$7 \longdiv { 6 8 6 }$	
$939 \div 5$	
$\frac{558}{9}$	
$3 \longdiv { 1 2 2 }$	

Whole number without remainder	Whole number with remainder
\checkmark	
	\checkmark
\checkmark	
	\checkmark

Jana spends 1056 minutes a week at swimming training. If she trains for the same length of time each day for 6 days a week, how long is each training session?

176 minutes

3 A gardener orders 3500 kg of mulch for 4 garden beds. If the mulch is evenly distributed between the 4 garden beds, what mass of mulch does each garden bed receive?

4 Roger has twice as many swap cards as Wilson. Serge has 3 times as many cards as Wilson. If they have 912 cards altogether, how many does each person have?
\qquad
\qquad
\qquad
\qquad

Dividing them up

(1) Complete each of the following divisions. Use a calculator to check your answer is correct.
a $\frac{496}{2}=$ \qquad b $953 \div 8=$
c $4 \longdiv { 7 8 6 4 } =$
1966
d $6 \longdiv { 9 4 3 4 } =$
119.125
1572.33
2. The Wanguri Wombats cricket team has made a total of 2944 runs in their last 8 matches. If they scored the same number of runs in each match, how many did they score?

368 runs

3
A group of 6 people decided to split the cost of a jet ski that cost $\$ 9660$. How much will each person have to pay?
$\$ 1610$

4 Hope, Eleanor and Mackenzie are all registered on a social networking website. Hope has twice as many friends as Eleanor, and Mackenzie has three times as many friends as Hope. If they have 882 friends between them, how many friends does each girl have?

Eleanor 98. Hope 196. Mackenzie 588

5 When Mrs Weasle dishes out the porridge she gives Ranee twice as much as Herman and gives Harry three times as much as him. If the pot has 930 g of porridge, how much does each person receive?

| Herman 155 g | |
| :---: | :---: | :---: |
| Harry 465 g | NiB 3 |
| Ranee 310 g | card ${ }^{4} 9$ |

Factors and multiples

(1) Identify, by placing a tick (\mathcal{V}) next to the number, which are factors of the numbers shown in bold.

$\begin{array}{lllllllllllll}\mathrm{b} & 35 & \square & \square & \square & \square 4 & \square 5 & \square 6 & \square 7 & \square & \square 9 & \square & \square\end{array}$

| d | 115 | \square | \square | \square | $\square 4$ | \square | \square | \square | $\square 7$ | \square | \square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \square 10 \square 20$

(2) Complete these multiplications.

You can use a calculator if you wish.
a $6 \times 10=\underline{60}$

| 6×100 | $=600$ | 6×1000 |
| :--- | :--- | :--- |$=\underline{6000}$

3 a List all the patterns you can see in the answers to Question 2.
Multiplication by 10 adds 1 zero to the end of the number.
by 100 adds 2 zeros and by 1000 adds 3 zeros.
b Use some or all of these patterns to help you complete the following multiplications, without using a calculator.

i	$84 \times 10=\underline{840}$	$84 \times 100=\underline{8400}$	84×1000	$=\underline{84000}$
ii $273 \times 10=\underline{2730}$	$273 \times 100=\underline{27300}$	$273 \times 1000=\underline{273000}$		
iii $5731 \times 10=\underline{57310}$	$5731 \times 100=\underline{573100}$	$5731 \times 1000=\underline{5731000}$		

C Use some or all of these patterns to help you complete these inverse operations, without using a calculator.
i $90 \div 10=\underline{q} 900 \div 100=\underline{q} 9000 \div 1000=\underline{9}=\underline{56} 56000 \div 1000=\underline{56}$
ii $560 \div 10=\underline{56} 5600 \div 100=\underline{210} 213000 \div 100=\underline{2130} 2103000 \div 1000=\underline{2103}$
iii $2100 \div 10=\underline{210} 2100$

Factors of numbers

(1) Write down all the factors of the following numbers.
a $\quad 12$
b 13
C 20
$1,2,3,4,6,12$
1.13
$1,2,4,5,10,20$
d. 30
1,2,5,6,15,30
e $\quad 48$
$1,2,3,4,6,8,12,24,48$
f 67
1.67
g 79
h 80
$1,2,4,5,8,10,16,20,40,80$
i 100
1.2, 4, 5, 10, 20, 25, 50, 100
2. What do your answers to Questions lb, f and g have in common?
\qquad
The only factors are 1 and the number itself
(3) a Complete the factor tree for 150. Students' answers will vary. 150
b List all the factors of 150 in order from smallest to largest.
$1,2,3,5,6,10,15,25,30,50,75,150$

C Compare your factor tree and your list of factors with a classmate. How are they the same? How are they different?

\qquad
d How do you know that you have found all the factors of 150 ?
All the branches of the factor tree have been filled out.

4 A local community group is organising a trivia night. They have enough room for 640 competitors.
a If all people must be in a team and all teams are the same size, what size teams can 640 people be divided into? (Hint: what are the factors of 640?)

$$
1,2,4,5,8,10,16,20,32,40,64,80,128,160,320,640
$$

b If there are only 80 tables, what is the smallest team size that they can have, if there is to be one team per table?
\qquad

Prime numbers are numbers that have only two factors, themselves and the number I. (The number I is NOT a prime number, as it has only one factor, itself.) I 3 is a prime number as only I and I3 are factors.
Composite numbers are numbers with more than two factors. 6 is a composite number as its factors are I, 2, 3 and 6.
1.

Use mental strategies to determine which of these numbers are composite. Place a circle around them.

(9)	17	(21)	(25)	(36)	(45)	47
(52)	(60)	73	79	(81)	(85)	(92)
(93)	(99)	(00)	(20)			

2. What steps did you follow to determine which numbers were composite in Question 1 and which were not?

Students' answers will vary.

List all the factors for these composite numbers, and then rewrite the factors in order from smallest to largest.

Composite numbers	Factors	Ordered factors	
a	15	$1,3,5,15$	$1,3,5,15$
b	36	$1,2,3,4,6,9,12,18,36$	$1,2,3,4,6,9,12,18,36$
c	55	$1,5,11,55$	$1,5,11,55$
d	81	$1,3,9,27,81$	$1,3,9,27,81$
e	95	$1,5,19,95$	$1,5,19,95$

Thirds, sixths and twelfths

(1) Divide each group of 60 apples, using a ruler to draw lines between the apples, as directed.
a Divide into thirds, then sixths
b Divide into half and then quarters. and finally twelfths.

2
Use the information in Question 1 to complete the following statements.

a	$\frac{1}{2}$ of 60	$=$	30	b	$\frac{1}{3}$ of 60	=	20
C	$\frac{1}{4}$ of 60	$=$	15	d	$\frac{1}{6}$ of 60	$=$	10
e	$\frac{1}{12}$ of 60	$=$	5	f	$\frac{2}{3}$ of 60	$=$	40
g	$\frac{5}{6}$ of 60	=	50	h	$\frac{7}{12}$ of 60	$=$	35

Write true or false for the following statements.
a $\frac{1}{2}$ of 60 has twice as many items as $\frac{1}{4}$ of 60 .
b $\frac{1}{6}$ of 60 has half the number of items of $\frac{1}{12}$ of 60 .
C There are fewer items in $\frac{1}{3}$ of 60 than in $\frac{1}{4}$ of 60 .

True
False
False

(4) Travis is having a birthday party. His cake is shown in the picture.
a Divide the cake into 12 equal slices.
b If Travis and his friends eat 11 slices of cake, how many will be left? What fraction of the original cake is this?

$$
1 \text { piece, } \frac{1}{12} \text { of cake }
$$

C If every person gets the same number of slices,
 and Travis eats 2 slices of his birthday cake, how many friends does he have at his party?

5 friends
(5) Simon's mother made 25 chocolate chip muffins. If Simon took $\frac{3}{5}$ of the muffins to school for a cake stall, how many muffins did he take?
Simon took \qquad muffins to school.

Fractions and Decimals

Fractions of a group

(1) Find the answer to each question using the pictures to help you.

$$
\begin{aligned}
& \frac{3}{4} \text { of } 20=\frac{15}{6} \\
& \frac{3}{10} \text { of } 20=\frac{6}{4} \text { of } 20=\frac{4}{\frac{1}{5}}
\end{aligned}
$$

b

$$
\frac{2}{5} \text { of } 30=
$$

\qquad

$$
\frac{5}{6} \text { of } 30=
$$

\qquad

$$
\frac{1}{3} \text { of } 30=
$$

\qquad
C
$\frac{3}{8}$ of $24=$ \qquad 9
$\frac{5}{12}$ of $24=$ \qquad
$\frac{1}{6}$ of $24=$ \qquad
d

$\frac{1}{3}$ of $36=12$
$\frac{10}{12}$ of $36=$ \qquad
$\frac{1}{4}$ of $36=$ \qquad

2 Place a circle around the fraction that has a larger number of items. Use your answers from Question 1 to help you.
a
$\frac{3}{4}$ of 20 or $\frac{2}{5}$ of 30
b. $\frac{1}{3}$ of 36 or $\frac{5}{12}$ of 24
c $\frac{1}{3}$ of 30 or $\frac{3}{8}$ of 24
d $\frac{5}{6}$ of 30
or

e $\frac{1}{6}$ of 24
or

f $\frac{1}{5}$ of 20
or

Comparing thirds, sixths and twelfths

1 Write the fraction that has been shaded, and then write $<$, $>$ or $=$ in the boxes to complete the statements.

b

$\frac{2}{3}$
d

$\frac{8}{12}$
$\frac{5}{6}$
(2) Write these fractions in order from largest to smallest.
a $\frac{1}{8}, \frac{1}{2}, \frac{7}{8}, \frac{1}{4}$
$\frac{\frac{7}{8}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}}{\frac{5}{6}, \frac{4}{6}, \frac{3}{6}, \frac{1}{6}} \frac{\frac{5}{6}, \frac{2}{3}, \frac{3}{6}, \frac{1}{3}}{\frac{3}{5}, \frac{5}{10}, \frac{3}{10}, \frac{1}{5}}+\frac{4}{6}, \frac{5}{12}, \frac{1}{3}, \frac{2}{12} / 2$
(3)

Place each fraction in its correct position on the number line.

4 You are given a choice of taking $\frac{2}{3}$ of a packet of 36 chocolate eggs or $\frac{5}{6}$ of a packet of 60 chocolate eggs. Which would you choose and why?

$\frac{5}{6}$ of $60=50$
$\frac{2}{3}$ of $60=40$
$\frac{5}{6}=$ more chocolate

Multiplication and 'of'

(1) Rewrite each of these statements using mathematical symbols.

In Mathematics the word 'of' often means multiplication.
So, $\frac{1}{4}$ of 12 can also be written as $\frac{1}{4} \times 12$.
$\begin{array}{lll}\text { a } & \frac{1}{2} \text { of } 100 & \frac{1}{2} \times 100 \\ \text { b } & \frac{1}{10} \text { of } 70 & \frac{1}{10} \times 70 \\ \text { C } & \frac{1}{3} \text { of } 90 & \frac{1}{3} \times 90 \\ \text { d } & \frac{7}{8} \text { of } 64 & \frac{7}{8} \times 64 \\ & \end{array}$

Use the pictures below to help you answer Questions 2 and 3.

(2) Calculate the following, giving your answers in minutes.

a	$\frac{1}{6}$ of an hour		10 minutes	b	$\frac{1}{3}$ of an hour		20 minutes
C	$\frac{2}{5}$ of an hour		24 minutes	d	$\frac{5}{12}$ of an hour		25 minutes
e	$\frac{1}{10}$ of an hour		6 minutes	f	$\frac{3}{4}$ of an hour		45 minutes

(3) Emily spent $\frac{2}{3}$ of an hour doing her homework, while Bethany spent $\frac{6}{10}$ of an hour doing her homework.
a Who spent longer on their homework, Emily or Bethany?
\qquad
Emily
\qquad
\qquad
b How much longer did she spend on her homework? \qquad 4 minutes.

Use a calculator to find these quantities.
a $\frac{7}{11}$ of $121=$ \qquad
77
b. $\frac{5}{16}$ of $128=$ \qquad
C $\frac{27}{100}$ of $500=$ \qquad 135

102

One way of writing a division is as a fraction, and 'of' means to multiply. So, $\frac{7}{11}$ of 121 can be re-written as $(7 \div 11) \times 121$.

e $\frac{9}{20}$ of $160=$ \qquad
f $\frac{4}{25}$ of $275=$ \qquad

Comparing fractions

Use these pictures to help you answer the questions on this page.

1. Look at the pictures above, and complete the following statements by inserting <, > or $=$.

| a $\frac{1}{2}$ | $<\frac{5}{8}$ | b $\frac{1}{8}$ | $<\frac{2}{10}$ | C $\frac{4}{5}$ | $=\frac{8}{10}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| d $\frac{1}{5}$ | $>\frac{1}{6}$ | e $\frac{2}{4}$ | $=\frac{3}{6}$ | f $\frac{1}{3}$ | $=\frac{4}{12}$ | |
| g $\frac{3}{4}$ | $=\frac{9}{12}$ | h $\frac{2}{3}$ | $>\frac{1}{2}$ | i $\frac{2}{8}$ | $<$ | $\frac{3}{10}$ |
| j $\frac{5}{6}$ | $>\frac{6}{10}$ | k $\frac{3}{12}$ | $<\frac{3}{8}$ | l $\frac{1}{4}$ | $>$ | $\frac{1}{12}$ |

2. Rewrite each set of fractions in order from largest to smallest. a $\frac{1}{3}, \frac{1}{12}, \frac{1}{6}, \frac{1}{2}$
b $\frac{1}{4}, \frac{1}{10}, \frac{1}{5}, \frac{1}{8}$
C $\frac{1}{12}, \frac{1}{5}, \frac{1}{2}, \frac{1}{8}$
d $\frac{1}{4}, \frac{1}{3}, \frac{1}{12}, \frac{1}{10}$

3 Imperial spanners or wrenches, such as those shown in the picture, can be measured using fractions.
The sizes of these spanners are: $\frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}$.
a Rewrite these sizes using a denominator of 8 for each one.

$$
\frac{2}{8}, \frac{3}{8}, \frac{4}{8}, \frac{5}{8}, \frac{6}{8}
$$

b Are there any spanner sizes missing? If so, which size/s are missing? Give a reason for your answer.

Students' answers will vary.

Are they the same fraction?

1. Colour $\frac{1}{2}$ of each of the shapes and complete the fractions.

$\frac{1}{2}$

$\frac{2}{4}$

$\frac{6}{12}$
2. Colour $\frac{1}{4}$ of each of the shapes and complete the fractions.

$\frac{1}{4}$

$\frac{2}{8}$

(3) Colour $\frac{1}{3}$ of each of the shapes and complete the fractions.

$\frac{1}{3}$

2
6

4. Question 1 shows fractions that are equivalent, or equal to $\frac{1}{2}$. In your own words, write a description of an equivalent fraction.

Students' answers will vary.
\qquad
\qquad

Equivalent fractions

Use the picture of 120 stars to help you complete the questions.

(1) Complete the following using a mental strategy.
a $\frac{1}{2}$ of $120=\underline{60}$
b $\frac{1}{4}$ of $120=$ \qquad C $\frac{3}{4}$ of $120=$ \qquad
2. Split the stars into thirds and sixths. How many stars are in each fraction?
a $\frac{1}{3}=\underline{40}$
d $\frac{2}{6}=-40$
g $\frac{5}{6}=100$
b $\frac{2}{3}=-80$
C $\frac{1}{6}=\underline{20}$
e $\frac{3}{6}=$ \qquad f $\frac{4}{6}=$ \qquad
(3) Now split the stars into twelfths and complete the following sentences.
a $\frac{1}{12}$ of $120=$ \qquad
b $\frac{2}{12}$ of $120=$ \qquad
C $\frac{3}{12}$ of $120=$ \qquad f $\frac{6}{12}$ of $120=\underline{60}$
d $\frac{4}{12}$ of $120=40$
e $\frac{5}{12}$ of $120=50$
f $\frac{6}{12}$ of $120=\quad 60$
g $\frac{7}{12}$ of $120=$ \qquad h $\frac{8}{12}$ of $120=$
i $\frac{9}{12}$ of $120=$ \qquad
j $\frac{10}{12}$ of $120=$
k $\frac{11}{12}$ of $120=\underline{110}$

Look at your answers to
Questions 1, 2 and 3. Which fractions contain the following?
a 90 stars

d 40 stars

5) Write true or false for the following statements.
a $\frac{1}{2}=\frac{4}{6}$

False
False
True
True
False
False
True

Forming equivalent fractions

Equivalent fractions can be formed by multiplying the numerator and the denominator of a fraction by the same number.

For example:
$\frac{2}{3}$ is changed into $\frac{4}{6}$ by $\frac{2 \times 2}{2 \times 3}=\frac{4}{6}$
In a similar way,
$\frac{3}{4}$ is changed into $\frac{9}{12}$ by $\frac{3 \times 3}{4 \times 3}=\frac{9}{12}$
They can also be formed by dividing the numerator and the denominator by the same number.

When reducing the fraction to its lowest form, you should continue dividing until the numerator and denominator cannot be evenly divided by the same whole number.

For example:
$\frac{8 \div 2}{12 \div 2}=\frac{4}{6}$, which can be further reduced as
4 and 6 are divisible by 2 ;
$\frac{4 \div 2}{6 \div 2}=\frac{2}{3}$, this is the lowest fraction as
2 and 3 cannot be evenly divided by the same whole number.

Use the information above to help you change these fractions. The first one has been done for you.

b

$9 \frac{8}{12} \xrightarrow{=} \xrightarrow{\times 2} \frac{16}{24}$
e

Change the following fractions into their lowest form, and write a statement showing what factor you used to divide. The first one has been done for you.
a $\frac{12}{36}=\frac{1}{3}$
b $\frac{36}{48}=\frac{3}{4}$
c $\frac{15}{60}=\frac{1}{4}$
d $\frac{50}{100}=\frac{1}{2}$

12 divides both numbers

12 divides both numbers

15 divides both numbers

50 divides both numbers

Changing fractions

1. Complete each of the following by finding the equivalent fraction.
a $\frac{1}{2}=\frac{3}{6}=\frac{6}{12}$
b. $\frac{1}{3}=\frac{2}{6}=\frac{4}{12}$
C $\frac{1}{4}=\frac{2}{8}=\frac{3}{12}$
d $\frac{1}{6}=\frac{2}{12}$
e $\frac{3}{4}=\frac{6}{8}=\frac{9}{12}$
f $\frac{2}{3}=\frac{4}{6}=\frac{8}{12}$

2 Complete the following by writing in the same mathematical operation for each fraction. The first one has been done for you.

b $\frac{2}{3} \xrightarrow[x_{4}]{\stackrel{\times 4}{=}} \frac{8}{12}$
c $\frac{1}{4} \xrightarrow[\times 2]{\stackrel{\times 2}{=}} \frac{2}{8}$
d $\frac{3}{4} \xrightarrow[x_{3}]{\stackrel{\times 3}{=}} \frac{9}{12}$
e

$\mathrm{f} \frac{6}{12} \xrightarrow[+6]{\stackrel{\div 6}{=}} \frac{1}{2}$

3 Describe how you could mentally change $\frac{1}{3}$ into twelfths.
Multiply both the numerator and denominator by 4. giving $\frac{4}{12}$

Share your answer to Question 3 with a classmate. How are your answers the same?
How are they different? How could you mentally reduce a fraction?

4 Use a mental strategy to reduce these fractions to their lowest form.
a $\frac{10}{30}=\frac{1}{3}$
b $\frac{60}{90}=\frac{2}{3}$
c $\frac{15}{20}=\frac{3}{4}$
d $\frac{30}{150}=\frac{1}{5}$
e $\frac{30}{100}=\frac{3}{10}$
f $\quad \frac{6}{24}=\frac{1}{4}$
g $\frac{30}{36}=\frac{5}{6}$
h $\frac{12}{144}=\frac{1}{12}$

Adding whole numbers and fractions

1. Using the pictures, complete the number sentences. The first one is done for you
a

$1+$
b
$=1 \frac{1}{2}$

$$
1
$$

d

$1+\frac{5}{6}=\underline{1 \frac{5}{6}}$
$1+$

e

f

$$
\frac{2}{5}+\frac{2}{5}=2 \frac{2}{5}
$$

2 Draw pictures and complete these number sentences.
a $1+\frac{3}{4}=\underline{1 \frac{3}{4}}$
b $1+\frac{5}{8}=1 \frac{5}{8}$

C $2+\frac{1}{4}=2 \frac{1}{4}$
d. $3+\frac{9}{10}=3 \frac{9}{10}$
e $1+\frac{1}{3}=\underline{1 \frac{1}{3}}$
$\mathrm{f} 7+\frac{1}{6}=7 \frac{1}{6}$

Subtracting a fraction

1 Draw pictures to help you complete the number sentences. The first one has been done for you.
a

$=\frac{1}{2}$
b

$1-\frac{1}{2}$
C

$$
1-\frac{1}{3}
$$

e

$$
=\frac{2}{3}
$$

$$
1-\frac{2}{5}
$$

$$
=\frac{3}{5}
$$

d

f

$$
1-\frac{3}{4}
$$

\qquad
$=\frac{1}{4}$

$$
\frac{1}{5}
$$

2 Complete the following number sentences. Use the shape provided to help you if necessary.
a

$$
1-\frac{1}{3}=\frac{\frac{2}{3}}{}
$$

b
C

d

$$
1-\frac{3}{5}=
$$

e

$1-\frac{5}{9}=$ \qquad
f
$1-\frac{2}{10}=$

$$
1-\frac{13}{16}=
$$

Addition with a common denominator

1. Use diagrams to help you complete the following additions. The first one has been done for you.
a $\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$

b $\frac{1}{5}+\frac{2}{5}=$ \qquad

C $\frac{5}{8}+\frac{7}{8}=\underline{\frac{12}{8}}$

d $\frac{7}{12}+\frac{11}{12}=$ \qquad $=$

e $\frac{9}{2}+\frac{5}{2}=\frac{14}{2}=$

(2) Complete the following additions. Use the empty number lines to help you if necessary.
a $\frac{1}{6}+\frac{1}{6}=$ \qquad
$\frac{2}{6}$
b $\frac{1}{8}+\frac{7}{8}=$
$\frac{8}{8}=1$
C $\frac{2}{3}+\frac{2}{3}=$ $\frac{4}{3}=1 \frac{1}{3}$
d. $\frac{11}{12}+\frac{11}{12}=$

$$
\frac{22}{12}=1 \frac{10}{12}
$$

3 Natalie painted the bedrooms of her sons, Caleb and Joshua, the same colours, 3 walls in 'harbour sky' and a feature wall in 'blue charm'. For Caleb's room she used $\frac{5}{12}$ of a can of 'harbour sky' and $\frac{2}{8}$ of a can of 'blue charm'. In Joshua's room she used $\frac{4}{12}$ of a can of 'harbour sky' and $\frac{5}{8}$ of a can of 'blue charm'.

a How much 'harbour sky' did Natalie use altogether?

$$
\frac{5}{12}+\frac{4}{12}=\frac{9}{12} \text { of a can }
$$

b How much 'blue charm' did Natalie use?

$$
\frac{2}{8}+\frac{5}{8}=\frac{7}{8} \text { of a can }
$$

Subtraction with a common denominator

1 Use diagrams to help you complete the following subtractions. Write the fractions in their lowest form. The first one has been done for you.
a. $\frac{11}{12}-\frac{3}{12}=\frac{8}{12}=\frac{2}{3}$
b $\frac{9}{10}-\frac{3}{10}=\frac{6}{10}=\frac{3}{5}$

C $\frac{11}{2}-\frac{5}{2}=\frac{6}{2}=3$
d. $\frac{19}{3}-\frac{7}{3}=\frac{12}{3}=4$
e $\frac{25}{4}-\frac{17}{4}=\frac{8}{4}=2$
2 Complete the following subtractions. Use the empty number lines to help you if necessary.
a $\frac{10}{12}-\frac{4}{12}=\frac{6}{12}=\frac{1}{2}$
b $\frac{7}{8}-\frac{3}{8}=\frac{4}{8}=\frac{1}{2}$
C $\frac{20}{6}-\frac{14}{6}=\frac{6}{6}=1$
d $\frac{13}{3}-\frac{1}{3}=\frac{12}{3}=4$

Akiko bought $\frac{11}{4}$ metres of material to make a dress. Hana bought $\frac{33}{10}$ metres of material to make a suit. When they had cut the material for their clothes Akiko had $\frac{1}{4}$ of a metre left and Hana had $\frac{7}{10}$ metre left.
a How much material did it take to make Akiko's dress?

$$
\frac{11}{4}-\frac{1}{4}=\frac{10}{4}=2 \frac{1}{2} \text { metres }
$$

b How much material did it take to make Hana's suit?

$$
\frac{33}{10}-\frac{7}{10}=\frac{26}{10}=2 \frac{3}{5} \text { metres }
$$

C It is not common to ask for $\frac{11}{4}$ metres of material. How would you ask a salesperson for this length of material?

Place value of decimals

	$\stackrel{\curvearrowleft}{\omega}$		ㄷㅡㅡㄹ	$\begin{aligned} & \stackrel{n}{n} \\ & \stackrel{N}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{5}{0} \\ & \frac{0}{0} \\ & \frac{0}{5} \\ & \frac{1}{1} \end{aligned}$	
I	2	0	-	2		
		0	-	2	6	
	1	0	-	4		
		0	-	6	3	2

Remember!

- Zero holds a place.
- When writing decimal numbers, it is useful to write a number in the Ones column, even if the number is zero, e.g. $0.26,0.632$.
- Zeros to the right of a decimal number are not necessary, e.g. 10.400: the zeros to the right of the 4 are not necessary.

1 Place a line through each of the zeros that are not necessary.
a 1003.34
b 176.003
c $\quad \varnothing 12.403$
d $\phi \varnothing 122.021 \phi$
e $420.054 \phi \phi \phi$
f $41.032 \phi \phi$
(2) Write each of the following as decimal numbers.
a twelve point six, nine, three
12.693
b two hundred and six point nine, zero, one 206.901 1200.119

C one thousand two hundred point one, one, nine 130000.606
d one million and thirty thousand point six zero, six
9027.005
e nine thousand and twenty seven point zero, zero, five
f forty-seven and twenty-eight hundredths 47.28
g one hundred and two, and two hundred and forty thousandths 102.240
h ninety-three and seventy-seven thousandths 93.077
(3) Write in words how these numbers would be read aloud.
a 3.942
b 42.903
C 5002.523
d 62020.707

Three point nine, four, two
forty two point nine, zero, three
five thousand and two point five, two, three
sixty two thousand and twenty point seven, zero, seven

Decimals, fractions and place value

1 Write each of the numbers in the place value table, and write the place value of the number shown in bold.

Number			$\begin{aligned} & \text { U } \\ & \text { CI } \end{aligned}$		$\begin{gathered} \text { U } \\ \underset{y}{c} \\ \underset{\sim}{0} \end{gathered}$			Place value
13.835					8			$\frac{8}{10}$
183.037		8						80
1.926							6	$\frac{6}{1000}$
0.373						7		$\frac{7}{100}$
16.03			6					6

(2) Write each of these decimals as a fraction.
a $0.425=\frac{\frac{425}{1000}}{502}$
e $0.02=$ \qquad
b $0.012=$ \qquad
d $0.63=$

3 Write each of these fractions as a decimal.
a $\frac{832}{1000}=0.832$
b $\frac{902}{1000}=\underline{0.902}$
c $\frac{530}{1000}=0.530$
d $\frac{18}{1000}=\underline{0.018}$
e $\frac{6}{1000}=\underline{0.006}$
f $\frac{4}{100}=\underline{0.004}$
(4.) Express each length in kilometres.
a $8 \mathrm{~m}=\frac{0.008}{0.059} \mathrm{~km}$
b $59 \mathrm{~m}=0.059 \mathrm{~km}$
C $680 \mathrm{~m}=0.68 \mathrm{~km}$

5 Express each mass in kilograms.

Remember!

A metre is $\frac{1}{1000}$ of a kilometre.

Remember!

A gram is $\frac{1}{1000}$ of a kilogram.
a $5 \mathrm{~g}=0.005 \mathrm{~kg}$
b $823 \mathrm{~g}=0.823 \mathrm{~kg}$
c $501 \mathrm{~g}=\underline{0.501} \mathrm{~kg}$

Comparing decimals

(1) Circle the larger number of each pair.

a	0.9	or	0.09		b	0.003	or
c	0.53	or	0.053		d	0.021	or

2. Order the numbers below, from smallest to largest, by placing a $1,2,3$ or 4 in the blanks.
a 10.145
20.328
$\begin{array}{ll}1 & 13.759 \\ 4 & 0.5 \\ 3 & 1.08\end{array}$
$4 \quad 0.975$
$\begin{array}{ll}2 & 13.836 \\ 1 & 0.42 \\ 2 & 1.053\end{array}$

3 Rewrite each set of numbers from largest to smallest.
a 198.596, 198.534, 198.923, 198.302
198.923, 198.596, 198.534, 198.302
b $0.974,0.243,0.427,0.853$
$0.974,0.853,0.427,0.243$

C $54.9,54.935,54.608,54.62$
$54.935,54.9,54.62,54.608$
d $0.6,0.02,0.735,0.035$
$0.735,0.6,0.035,0.02$
4 Write 4 numbers that have the place values indicated. The first one has been done for you. Students' answers will vary.
$\begin{array}{lllll}\text { a } & 4 \text { hundredths } & 12.147 & 931.04 & 5.041\end{array}$
b 6 tenths
C 8 thousandths
d 2 hundredths
e 3 tenths, 5 thousandths
f 0 hundredths, 7 thousandths \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ractions and Decimals

Working with decimals

1 During a walk-a-thon, students must walk as far as they can in one hour. The results are shown in the table.
a List the top 3 students.

i	First place	Lian
ii	Second place	Anthony
iii	Third place	Asher

b All of the students walked between 6 km and 7 km . Name the students that walked:

Student	Distance walked (km)
Xavier	6.052
Anthony	6.847
Lian	6.856
Ada	6.408
Asher	6.480

i 6 km and 52 m . \qquad
ii 6 km and 408 m . \qquad
C How far did each of the place-getters walk?

First place	6	km and	856
ii Second place	6	m and	847
iii Third place	6	km and	480

d Malik was absent on competition day and completed the walk-a-thon when he returned to school. He walked 6.672 km in one hour. Does this change the top 3 ? Give a reason for your answer.

Yes, Malik is in third place because he walked
further than Asher but not as far as Anthony.

2 a Write each of the decimals in the table as a fraction.
b

Using a calculator, or a mental strategy, reduce these fractions to their lowest form.

C Identify the factor that was used to reduce the fractions.

Decimal	Fraction	Lowest form of the fraction	Factor used
0.75	$\frac{75}{100}$	$\frac{3}{4}$	25
0.9	$\frac{90}{100}$	$\frac{9}{10}$	10
0.852	$\frac{852}{1000}$	$\frac{213}{250}$	4
0.065	$\frac{65}{1000}$	$\frac{13}{200}$	5

Percentage

A percentage (\%) is a fraction with a denominator of 100.
25% means twenty-five out of one hundred or $\frac{25}{100}$.

1. Colour each 100 grid as directed and complete the statements.
a Colour $\frac{17}{100}$ of the 100 grid.
b Colour $\frac{42}{100}$ of the 100 grid.

$$
\frac{17}{100}=\underline{17} \%
$$

C Colour $\frac{1}{2}$ of the 100 grid.

$$
\frac{1}{2}=\frac{50}{100}=\frac{50}{\%}
$$

e Colour $\frac{1}{10}$ of the 100 grid.

$$
\frac{1}{10}=\frac{10}{100}=\frac{10}{\%}
$$

$$
\frac{42}{100}=\underline{42} \%
$$

d. Colour $\frac{1}{4}$ of the 100 grid.

$$
\frac{1}{4}=\frac{25}{100}=25 \%
$$

f Colour $\frac{1}{5}$ of the 100 grid.

$$
\frac{1}{5}=\frac{20}{100}=20
$$

2 Use a 100 grid, or a mental strategy, to write each fraction as a percentage.
a $\frac{5}{100}=$ \qquad \%
b $\frac{12}{100}=12 \%$
c $\frac{39}{100}=\quad 39 \%$
d $\frac{52}{100}=[52 \%$
e $\frac{80}{100}=\ldots 80 \%$
f $\frac{98}{100}=\quad 98 \%$
g $\frac{4}{10}$ \qquad \%
h $\frac{7}{10}=\quad 70 \%$
i $\frac{9}{10}=\quad 90 \%$
j $\frac{2}{10}=$ \qquad \%

Percentages, decimals and fractions

A percentage means 'out of 100 '. So, 43% is $\frac{43}{100}$. When written as a decimal, $\frac{43}{100}$ is $0.43,43$ hundredths or 4 tenths and 3 hundredths.

43\%
43 hundredths
4 tenths and three hundredths

1. Write each of these percentages as a fraction of 100 and as a decimal.
a $25 \%=\frac{25}{100}=\underline{0.25}$
c $10 \%=\frac{10}{100}=0.1$
e $95 \%=\frac{95}{100}=\underline{0.95}$
b. $50 \%=\frac{50}{100}=\underline{0.5}$
d $67 \%=\frac{67}{100}=\underline{0.67}$
$\mathrm{f} 9 \%=\frac{9}{100}=\underline{0.09}$
2. Write each of these decimals as a percentage.
a $0.77=\ldots \quad 77 \%$
b $0.62=$ \qquad 62 \%
c $0.21=$ \qquad \%
d. $0.98=$ \qquad 98 \%
e $0.03=$ \qquad \%
g
$0.16=$ \qquad \%
f $0.01=$ \qquad \%
i $0.85=$ \qquad \%
h $0.37=$ \qquad 37 \%
(Complete the table.

Fraction	Decimal	Percentage
$\frac{4}{5}$ or $\frac{80}{100}$	0.8	80%
$\frac{9}{10}$	0.9	90%
$\frac{52}{100}$ or $\frac{13}{25}$	0.52	52%
$\frac{2}{25}$ or $\frac{8}{100}$	0.08	8%

Fraction	Decimal	Percentage
$\frac{3}{4}$ or $\frac{75}{100}$	0.75	75%
$\frac{20}{100}$ or $\frac{1}{5}$	0.2	20%
$\frac{15}{100}$ or $\frac{3}{20}$	0.15	15%
$\frac{3}{10}$ or $\frac{30}{100}$	0.3	30%

What percentages have you seen recently? Where did you see them? How were they being used?

Calculate with percentages

1 Omar must share each of the items below equally with his brother Ahmed.
a What percentage will each receive? \qquad \%
b Calculate using mental strategies how many items each brother will receive.

2 In Nina's family there are 5 people. They share the items below equally between them.
a What percentage will each person in Nina's family receive? \qquad 20 \%
b How much will each person in Nina's family receive?

Using percentages

1. Nariko is shopping from a department store catalogue. The prices that are shown do not include the 10% GST that will be charged. Calculate the GST for each of these items.

2 A survey found that 25% of people play organised sport. If this is true, how many people in each of these towns play sport?
a Milingimbi: population 900 225
\qquad
\qquad
C Warragul: population 10000
2500
b Kununurra: population 5500
\qquad 1375
\qquad
d Warrnambool: population 28800
7200

Work with a partner to write and conduct a survey. Present the results as percentages.

Financial planning

The GST is a 10% tax on goods and services that is collected by the Federal Government. The total price of an item, including GST, is 110% of the original price.
The GST part of a price is $\frac{10 \%}{110 \%}$ of the total price.
GST part of the total price $=\frac{10}{110}=\frac{1}{11}$
To find the GST component of a price multiply by $\frac{1}{11}$ or divide by II.

1. Chloe bought some things to sell at the school fete to raise money for a local charity. Because she's raising money for charity, Chloe can claim back the GST that she has paid. For the following three receipts, find out or calculate how much GST she paid.

GST \qquad
$\$ 13.26$

GST \qquad
$\$ 12.49$
2. How much GST did Chloe claim back in total? How much did she spend herself?

GST

JP Provedores	$\$ 13.26$
Ben's Plates N' Stuff	$\$ 12.49$
Fancy Fizz	$\$ 14.30$
Total	$\$ 40.05$

GST \qquad

FANCY FIIZZ	
GRAPEFRUIT FIZZ 5L	25.00
LIME FIZZ 5L	25.00
STRABEERY FIZZ 5L	25.00
LYCHEE FIZZ 5L	25.00
50 TUMBLERS-FANCY	43.00
TOTAL	143.00
HAUE A FANCY DAY	

Amount Chloe spent without GST

$\$ 132.55$
$\$ 124.90$
$\$ 143.00$
$\$ 440.50$

Sausage sirzle fundraising

The Dashville Demons Athletics Club runs a sausage sizzle at the local hardware store each weekend to raise money for new equipment. During the sausage sizzle they sell 25 sausages every hour. For every 10 sausages that they sell they make $\$ 5$.

1. Complete the table showing how many sausages are sold during the sausage sizzle.

No. of hours of the sausage sizzle	1	2	3	4	5	6	7
No. of sausages sold	25	50	75	100	125	150	175

2. Write the rule which connects the number of sausages sold to how long the sausage sizzle has run.
number of hours multiplied by 25 is equal to the number of sausages sold
(3) Complete the table showing how much money is made by selling the sausages.

No. of sausages sold	10	20	30	40	50	60	70
Money that is made (\$)	$\$ 5$	$\$ 10$	$\$ 15$	$\$ 20$	$\$ 25$	$\$ 30$	$\$ 35$

(4.) Write the rule which connects the number of sausages sold to how much money is made.

Half the no. of sausages sold is equal to the money made.
5. Use your answer to Question 2 to calculate how many sausages will be sold if the sausage sizzle is run for 20 hours.

Use your answers to Questions 4 and 5 to calculate the money that the club will make if the sausage sizzle is run for 20 hours.

1 If the club needs to make $\$ 1500$ to buy their equipment, how many sausages do they need to sell and how many hours do they have to run the sausage sizzle for?

3000 sausages, 120 hours.

\qquad
\qquad

1 Look at each of the following patterns. Draw or write the next 3 elements of the pattern.
a 100, 200, 300, 400,500, 600, 700, 800
b $\mathrm{ABC}, \mathrm{ABD}, \mathrm{ABE}, \mathrm{ABF}, \mathrm{ABG}, \mathrm{ABH}, \mathrm{ABI}, \mathrm{ABJ}$
c $2,6,10,14,18,22$, 26 , 30

$\mathrm{f} \dot{\mathrm{A} A} \mathrm{~A}, \mathrm{~A} \cdot \mathrm{~A}, \dot{\mathrm{~B}} \mathrm{~B}, \underline{B} \mathrm{~B}, \underline{C} \mathrm{C} ., \underline{C \cdot C}$
(2) a Draw the next 3 elements of the pattern.

$$
\triangle \triangle \cdot \triangle \triangle \triangle \cdot \triangle \Delta \Delta \Delta \Delta \Delta \quad \Delta \Delta \Delta \Delta \Delta \Delta \quad \Delta \Delta \Delta \Delta \Delta \Delta \Delta
$$

b Use the pattern to complete the table.

No. of triangles	1	2	2	3	4	5	6	7
No. of sides	3	2	6	2	12	15	18	21

C What patterns can you see in the table?
No. of sides is equal to no. of triangles
times 3.

Looking for patterns?

In a table of values, look for patterns that go across the rows as well as down the columns.

(3) a Draw the next 3 elements of the pattern.
$\square, \square \square, \square \square \square, ~ \square \square \square \square \square \square, \square \square$
b Use the pattern to complete the table.

No. of squares	1	2	2	3	4	5	6	7
No. of sides	4	8	8	12	16	20	24	28

C Look at the table. What patterns can you see?
No. of sides is equals to no. of squares times 4.
\qquad
\qquad

Geometric patterns

1 a Draw the next 3 elements of this pattern of pentagons.

b Use the pattern to complete the table.
16

No. of pentagons	1	2	3	4	4	5	6
No. of sides	5	10	15	20	25	30	35

C What patterns can you see in the table?
No. of sides is equal to no. of pentagons times 5 .
d How many sides would there be for 12 pentagons?
e How did you work out the answer to part d?
12×5

Kayla's grandmother is planning to make a quilt. The block pattern that she has chosen uses squares and triangles in 4 different colours - red, orange, light blue and navy blue. In a quilt many blocks are made and joined together to make the final quilt.
a Use the block picture to complete the table.

No. of blocks	1	2	3	4	5	6	7
Navy blue squares	2	4	6	8	10	12	14
Orange squares	2	4	6	8	10	12	14
Red triangles	8	16	24	32	40	48	56
Light blue squares	4	8	12	16	20	24	28
Light blue triangles	8	16	32	32	40	48	56

b Write in words the pattern that connects the number of blocks to:
i the number of navy blue squares needed.
The number of navy blue squares needed is twice the number of blocks
ii the number of red triangles needed.
The number of red triangles needed is eight times the number of blocks
C If Kayla's grandmother has 30 navy blue squares, how many blocks is this enough for?
d If the finished quilt has 240 red triangles, how many blocks does it have?

Patterns in columns

(1) a Draw the next 3 elements of this hexagon pattern.
b Use the pattern to complete the table.

No. of hexagons	1	2	3	4	5	6	7
No. of sides	6	12	18	24	30	36	42

C Look at the table. What patterns can you see?

$$
\text { No. of sides is equal to no. of hexagons times } 6 \text {. }
$$

d How many hexagons would there be if there were 120 sides? 20
e How many sides would there be if there were 50 hexagons?

The column pattern is the pattern that connects one set of numbers to another set of numbers. You find the pattern by looking down each column.

1	2	3	4	5
7	14	21	28	35

For example:
As shown in the table, the bottom numbers can be found by multiplying the top numbers by 7 ; $1 \times 7=7,2 \times 7=14,3 \times 7=21$.
This pattern occurs in every column of this table.

Complete each table and write in words the pattern that can be found in the columns.
a

The bottom numbers can be found by adding 1 to the top numbers.
b

1)	2	3	4	5	6	7	8	9	10
0.5	14	1.5	24	2.54	34	3.54	4	4.54	5

The bottom numbers can be found by halving the top numbers.

Working with patterns

1 a Draw in the next 3 elements of the pattern.

b Use the pattern to complete the table.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { Place in pattern } & 1 & 2 & \\ \hline \text { No. of hexagons } & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 5\end{array}\right)$

C Look at the table. What patterns can you see?
The numbers are the same.
d How many hexagons would the 35th place in the pattern have?
e Which place in the pattern would have 60 hexagons?
2 Plates come out on a sushi train at the rate of 8 per minute.
a Complete the table to show how many plates have come out.

Minutes	1	2	3	4	5	6	7
Number of plates	8	16^{2}	24	32	40	48	56^{2}

b Write the column pattern that connects the number of minutes that have gone by to the number of plates that have come out on the sushi train.

Number of minutes times 8 equals number of plates.

C

If the sushi train has been operating for three hours, how many plates have come out?

1440 plates

If 2880 plates have come out, how long has it been running in hours?

6 hours.
(1) a Draw in the next 3 elements of the pattern.

b Use the pattern to complete the table.

Steps	1	2	3	4	5	6	7
No. of small squares	3	6	9	12	15	18	21

C Write in words the pattern that you find in the columns of the table.
The number of small squares is 3 times the number of steps
d If there were 276 small squares, how many steps
would there be?
(2) Write the column pattern/rule in words for each of the tables.

| 5 | 2 | 6 | \ddots | 7 | 8 | | 9 | 2 | 10 | | 11 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 2 | 2 | 4 | 2 | 5 | | 6 | | 7 | | |

Column pattern/rule:
Subtract 4 from top number to get

The column pattern is also known as the 'rule'. It connects the first set of numbers (Ist row) to the second set of numbers (2nd row).

Column pattern/rule: Multiply top number by two to get bottom number

A cafe sells sliced cake at the rate of $1 \frac{1}{4}$ cakes per hour.

a Complete the table using the information provided.

No. of hours	1	2	3	4	5	6	7
Amount of cake	$1 \frac{1}{4}$	$2 \frac{1}{2}$	$3 \frac{3}{4}$	5	$6 \frac{1}{4}$	$7 \frac{1}{2}$	$8 \frac{3}{4}$

b Write the rule which connects the number of hours to the amount of cake sold.

$$
\text { multiply top row by } 1 \frac{1}{4} \text { to get the amount of cake sold. }
$$

c Use the rule to calculate how many hours it would take to sell ten cakes. $12 \frac{1}{2}$ hours.

Graphing patterns

The graph shows the pattern between the number of rides on a carousel and the number of tickets used to ride it.

1 Use the graph to complete the following sentences.
a The points on the graph form a pattern that looks like
b For each ride that is taken the number of tickets increases by
\qquad .

2 Plot the points for the number of tickets needed for 6 and 7 rides.
3. On the same graph in a different colour, plot the information in the table below which shows the number of tickets required to ride on the Giant Slide.

Number of rides	1	2	3	4	5
Number of tickets	6	12	18	24	30

4 Is it more or less expensive to ride on the Giant Slide than the carousel?
\qquad
Describe how the graphs of the ticket information for the Giant Slide and the carousel are:
a the same.
Both are straight lines with positive slopes if you connect the points.
b different.
The Gaint Slide's line is steeper than the carousel's line.

Missing numbers

One of the easiest ways to solve some simple missing number problems is to use the reverse operation. Here are two examples:
(8) $+19=32$
reverse the operation
8) $=32-19$
so $8=13$

$$
3 \times \phi=27
$$

reverse the operation

$$
\phi=27 \div 3
$$

Marisol has been to Venus and collected these aliens. She wants to sell them to a collector on Mars. Solve these missing number problems to find out how much each alien is worth. Write your answers on Marisol's catalogue below.

(1) $\boldsymbol{a} \quad-\quad+7=13$
b $\quad 11+\underline{\underline{2}}=16$

d $67=\stackrel{0}{0}+46$
(2) a $4 \times \stackrel{\text { ** }}{-}=12$
d $560=\stackrel{\text { N }}{2} \times 80$

f $64=4 \times$

3 a $\check{\text { ๕i }} \div 5=3$
b II $\div 7=50$
C $\div 50=15$

Introducing kilometres

1
Put a tick (\mathcal{J}) under those pictures that show distances that are most appropriate to measure in kilometres.

2 Measure each of the following distances, and record the results in the table.

Activity	Distance
Students' answers will vary.	
From your house to school	
From school to the locol shops	
Wolking around your local pork	
Running around the school oval	
The distance around your school	

3 Use the internet or other sources to find the following distances in kilometres:
a the length of your nearest airport runway \qquad km
b from school to the nearest suburb/town starting with ' D ' \qquad km
c the Olympic marathon race \qquad km
d the distance from Mackay to Rockhampton \qquad km
e the distance from Hobart, Australia to Auckland, New Zealand \qquad km
f the depth of the deepest part of the world's oceans, the Mariana Trench
g the height of Mount Everest
\qquad km
\qquad km

Working with kilometres

(1) Determine if the following statements are true or false.
a There are 1000 metres in 1 kilometre. \qquad True
b When changing from kilometres to metres the number gets smaller. \qquad False

To change a number from metres to kilometres the number gets smaller (because one metre is 1000 times shorter than one kilometre). Divide metres by 1000 to get kilometres.
To change from kilometres to metres the number gets larger (because one kilometre is 1000 times longer than one metre). Multiply kilometres by 1000 to get metres.

C When changing from metres to kilometres the number gets larger. \qquad False

Convert each of the measurements in metres to a measurement in kilometres.

a 4000 m	$=\frac{4}{} \mathrm{~km}$	b 63000 m	$=\frac{63}{} \mathrm{~km}$
c 360000 m	$=360 \mathrm{~km}$	d $8273000 \mathrm{~m}=\frac{8273}{\mathrm{~km}}$	

3 Convert each of the measurements in kilometres to a measurement in metres.
a 2 km
$=2000 \mathrm{~m}$
b 75 km
$=75000$ m
c $\quad 482 \mathrm{~km}$
$=\underline{482000} \mathrm{~m}$
d 5185 km
$=\underline{5185000} \mathrm{~m}$

Sven and Inge are Swedish backpackers who are visiting Australia. They buy a van and travel around Australia. The logbook of their trip is shown below, as well as the odometer reading when they start. Calculate how far they have travelled, and complete the second odometer to show what it reads at the end of their trip.

Kilometre problems

1. A map of Rottnest Island is shown. Luis travels there for the day, landing by ferry at Thomson Bay with his bicycle. Plan a bike trip for Luis of as close to 25 km as you can. Where could he visit on the trip?

Students' answers will vary.

The Andes mountains in South America sit next to a deep-sea trench. The picture shows the highest and lowest points. If you were able to travel directly from the highest point to the lowest point, how far would you have travelled in kilometres?

$$
15027 \mathrm{~m}
$$

\qquad
\qquad
\qquad

The wreck of RMS Titonic lies 3965 m below the surface of the ocean off the Newfoundland coast in the North Atlantic Ocean. The wreck of HMAS Sydney lies 2468 m below the surface of the Indian Ocean just off the Western Australian coast.
a Which wreck is deeper?
Titanic
b How many kilometres deeper is it?

Measuring perimeter

11 Use a ruler to measure the perimeter of each shape using the unit of measurement indicated.

Remember!

Perimeter is the distance around the outside of a two-dimensional shape.
C

b

a

\qquad
16
cm
e

165 mm
\qquad cm
d

2 Draw 3 shapes that have a perimeter of 12 cm .

f

\qquad cm

Students' answers will vary.

Calculating perimeters

1 Measure the perimeter of each shape.
a

\qquad
b

\qquad mm
C

\qquad mm

2 Calculate the perimeter of each shape.
व

270 mm

$\begin{aligned} \text { Perimeter } & =\underline{8}+\underline{9}+6 \mathrm{~cm} \\ & =23 \mathrm{~cm}\end{aligned}$

$$
=23 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Perimeter } & =\underline{270}+150 \mathrm{~mm}+150+100 \\
& =\underline{670} \mathrm{~mm}
\end{aligned}
$$

C

d

$$
\begin{aligned}
\text { Perimeter } & =\underline{3+5+3+2+1+1+1+2} \\
& =18 \mathrm{~m}
\end{aligned}
$$

Perimeter
$=8+6+6+3+17=40 m$
$=0.04 \mathrm{~km}$

A builder needs to buy a length of skirting board to go around a bedroom. The bedroom is rectangular, with walls measuring 540 cm and 310 cm . What length of skirting board does the builder need to purchase? Give your answer in metres.

$$
1700 \mathrm{~cm}=17 \mathrm{~m}
$$

Perimeters using different units

1 Calculate the perimeter of each shape.
a

$$
P=
$$

$$
=6.5+2.5+6.5+2.5
$$

$$
=
$$

\qquad cm
C

$$
P=3.7+2.1+2+5+4.5
$$

$=$ \qquad cm

The local orienteering club traversed a course that took them 210 m to a large tree, 370 m to the riverbank, 406 m to an old shearers' shed, 151 m to a large boulder and finally 363 m back to their start point.
a Label the picture with start/finish and arrows to show the direction they wolked.
b How many kilometres did they walk?
b

P = \qquad $423+423+105$
$=$ \qquad mm

$=$ \qquad 109 mm

3 Which of the rugs has the largest perimeter? Show your working.

$P=1+1+1.2+1.2$
$=4.4 \mathrm{~m}$

$P=1.5+1.5+0.8+0.8$
$=4.6 \mathrm{~m}=$ larger perimeter

Perimeter and speed

1 Write the speed shown on each speedometer in the space underneath.

$85 \mathrm{~km} / \mathrm{hr}$

Okm/hr

$50 \mathrm{~km} / \mathrm{hr}$

\qquad

2 a If Katrina rides her bicycle at $6 \mathrm{~km} / \mathrm{h}$, how far will she have travelled:
i after 1 hour? _6km ii after 2 hours? 12 km iii after 5 hours? 30 km
b How long would it take Katrina to travel:
i 24 km ? 4 hours
ii 54 km ? 9 hours
iii 90 km ?
15 hours

3 A farmer rides around his property on a motorcycle to check whether the fences are in need of repair. The path that he takes is shown in the picture.
a How far does the farmer travel?

$$
26 \mathrm{~km}
$$

b If he travels at $10 \mathrm{~km} / \mathrm{h}$, how long does it take?
2.6hrs (2hrs 36 min)
\qquad

C If the farmer travelled by horse at $3 \mathrm{~km} / \mathrm{h}$, how much time does he save using a motorcycle?
8.6 hrs by horse, therefore he saves 6 hrs by motorcycle.

4 Describe how you could measure the perimeter of shapes with curved sides such as the one shown.

Use a piece of string to trace the shape then measure the string with a ruler.

How can you easily calculate the perimeter of shapes that have some or all of their sides the same length? Talk about which shapes this applies to.

The hectare

Remember!

The area of a shape is how much of a surface it covers. We can measure area by covering a surface with squares that are identical to each other and counting them. All units of area are squares.
A hectare is 10000 square metres $\left(\mathrm{m}^{2}\right)$, a square with sides that measure 100 m .

1
Indicate with a tick $(\boldsymbol{\checkmark})$ which areas would be larger than a hectare.

stadium
surface
 court
 town

(inside the walls)

Each grid square in these pictures represents 100 m by 100 m . Count the squares to determine the area, in hectares, of each shape.
a

10 ha
d

12 ha
b

12 ha
e

10 ha
C

14.5 ha

66
Using Units of Measurement

Calculating area

1. Calculate the area of these squares and rectangles.

Area $=\underline{8} \times \underline{8}$

$$
=64 \mathrm{~cm}^{2}
$$

d

$$
\begin{aligned}
\text { Area } & =7 \times 4 \\
& =28 \mathrm{~m}^{2}
\end{aligned}
$$

b

Area $=\underline{11 \times 4}$
$=44 \mathrm{~cm}^{2}$
e

$$
\begin{aligned}
\text { Area } & =20 \times 4 \\
& =80 \mathrm{~m}^{2}
\end{aligned}
$$

Area $=9 \times$ \qquad

$$
\begin{aligned}
& =\frac{4}{} \times \frac{6}{54} \\
& =5 \mathrm{~cm}^{2}
\end{aligned}
$$

f

$$
\begin{aligned}
\text { Area } & =13 \times 8 \\
& =104 \mathrm{~m}^{2}
\end{aligned}
$$

C

2 Calculate the area.
a

$$
\begin{aligned}
\text { Area } & =\frac{12}{144} \times 12 \\
& =14 \mathrm{~cm}^{2}
\end{aligned}
$$

d

$$
\begin{aligned}
\text { Area } & =\frac{13}{26} \times 2 \\
& =26 \mathrm{~m}^{2}
\end{aligned}
$$

b

C

1. Each grid square in these shapes has an area of one square kilometre ($1 \mathrm{~km}^{2}$). Count the squares to determine the area, in square kilometres, of each shape.

$10 \mathrm{~km}^{2} \quad 10 \mathrm{~km}^{2}$
9 km ${ }^{2}$
2. Indicate with a tick (\mathcal{V}) the most appropriate unit to measure the area of the items in the table.

	$\mathbf{c m}^{2}$	\mathbf{m}^{2}	$\mathbf{h a}$	$\mathbf{k m}^{2}$
Carpet in a room		\checkmark		
A national park				\checkmark
Your backyord		\checkmark		
A football field		\checkmark		
The city of Ballarat			\checkmark	
A DVD cover	\checkmark			

The table gives the area, in square kilometres, of the Australian state and territory capital cities. Use this information to answer the questions.

Capital city	Area in km 2
Adelaide	1827
Brisbone	5905
Canberra	806
Darwin	112
Hobart	1357
Melbourne	8831
Perth	5386
Sydney	12145

a Which city covers the largest area? \qquad
b Which city covers the smallest area?

Darwin
C List the cities in order from smallest area to largest area.

Darwin, Canberra, Hobart, Adelaide,
Perth, Brisbane, Melbourne, Sydney

Using the square kilometre

1 Each grid square in the shapes below has an area of 1 square kilometre ($1 \mathrm{~km}^{2}$). Count the squares to determine the total area of each shape.
a
b

$$
8 \quad \mathrm{~km}^{2}
$$

2 Write the unit of area (size of the grid squares) that should be used for measuring each of the rectangles.
a

km^{2}
b

\qquad

3 Calculate the area of each of the shapes below. Remember to include the unit of area (size of the grid squares).
a

b

C

\qquad
$20 \mathrm{~m}^{2}$
$16 \mathrm{~cm}^{2}$
\qquad
\qquad
\qquad
\qquad

Area of triangles

(1) Choose the most appropriate unit of area for each triangle.
a

b

C

cm^{2}
\qquad _
\qquad
m^{2}
km^{2}
2. Count the grid squares to find the area of each triangle.
a
b

4.5 squares \qquad squares 9.5 squares
d

e
f
\qquad sa squares

\qquad 4 squares \qquad 7 squares
3. What did you find difficult about counting the squares to find the area of the triangle in Question 2d?

Students' answers will vary.
\qquad
\qquad
\qquad

Area of irregular shapes

1 Use the grid to help you estimate the area of each shape.

$$
\alpha
$$

b
C

d
e

20 squares
22 squares

2 Compare your estimates with a classmate's.

Did you use the same method to get your estimates? How were your methods the same?
How were they different?

3 Calculate the area of these rectangles using a mental strategy. Remember to include the unit of area (size of the grid squares) that was used to find the area.

(1) Make a $1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$ frame. Use it to identify, with a tick $(\mathbb{\checkmark})$, which of the following would fit inside a cubic metre ($1 \mathrm{~m}^{3}$) box.

Use your cubic metre frame to find objects in your classroom or home that will and won't fit inside one cubic metre ($1 \mathrm{~m}^{3}$). Record your findings in the table. Students' answers will vary.

Will fit into $1 \mathrm{~m}^{3}$	Won't fit into $1 \mathrm{~m}^{3}$

Matthew said that a standard adult racing bicycle would fit into a one cubic metre ($1 \mathrm{~m}^{3}$) box, while Jacob said that it wouldn't. Explain how they are both correct.

Students' answers will vary.

Estimating with cubic metres

To estimate the volume of a space, imagine how many cubic metre boxes you could fit in it, if they were stacked in rows and columns.

Estimate the size of the following items in cubic metres (m^{3}). You may like to draw pictures in the space provided to help you. Students' answers will vary.

	Item	Estimated size $\left(\mathrm{m}^{3}\right)$
a	Your bedroom	
b	Your classroom	
c	Your wardrobe	
d	Your kitchen	
e	A wheelie bin	
f	A gorden shed	
g	A refrigerator	
h	A bus	

Indicate in the table, with a tick (\mathcal{J}), the most appropriate unit for measuring the volume of these items.

Item	cm^{3}	$\mathrm{~m}^{3}$	Item	cm^{3}	$\mathrm{~m}^{3}$
Mulch for the garden		\checkmark	A 'green' recycle bag	\checkmark	
Clothes pegs in a basket	\checkmark		A television	\checkmark	
A large bag of potatoes	\checkmark		The space for clothes in your wardrobe		\checkmark
A shopping trolley		\checkmark	Bricks to build a house		\checkmark

Measuring with cubic metres

(1.) Label each of the items as having volume larger than (>), smaller than (<) or equal to (=) one cubic metre ($1 \mathrm{~m}^{3}$).

2 Each of the boxes shown will hold one cubic metre ($1 \mathrm{~m}^{3}$), two cubic metres ($2 \mathrm{~m}^{3}$) or half a cubic metre ($\frac{1}{2} \mathrm{~m}^{3}$). Match each box with its correct volume by placing its letter in the table.

Volume	Box
$\frac{1}{2} \mathrm{~m}^{3}$	d, c
$1 \mathrm{~m}^{3}$	b
$2 \mathrm{~m}^{3}$	a

(3) Each floor section of this building uses $350 \mathrm{~m}^{3}$ of concrete, and the pillars on one level use $125 \mathrm{~m}^{3}$. Use this information and the picture to work out how much concrete must be ordered.

Capacity of containers

1. Place the containers in order, from largest capacity to smallest capacity, by numbering the boxes from 1 to 6 .

2 Obtain 3 containers of various sizes and shapes. Estimate how many cubic centimetre ($1 \mathrm{~cm}^{3}$) blocks will fit into each container. Then, pack each container with cubic centimetre ($1 \mathrm{~cm}^{3}$) blocks and record its capacity in the table. Students' answers will vary.

Description of the container	Estimate of capacity in cubic centimetres (cm $\left.{ }^{3}\right)$	Capacity in cubic centimetres (cm $\left.{ }^{3}\right)$

3 Use 24 cubic centimetre blocks ($24 \mathrm{~cm}^{3}$) to make 3 different rectangular prisms. Draw each rectangular prism that you construct in the space provided. Students' answers will vary.

Measuring in tonnes

(1.) Indicate with a tick $(\boldsymbol{\checkmark})$, which of the pictures shows an object whose mass would be best measured in tonnes.

The table gives the masses of some cruise ships. Use the information to answer the questions.

Cruise ship	Mass (tonnes)
Darwn Princess	77499
Diamond Princess	113000
MS Volendam	61396
Pacific Dawn	70000
Pacific Sun	47000
Sarphire Princess	116000

a Which ship has the largest mass?
Sapphire Princess
b Is the Dawn Princess heavier or lighter than the Sapphire Princess?
\qquad
lighter

3 a What's the total mass of all of the ships in tonnes?
\qquad
b Convert your answer to kilograms.
\qquad
484895000 kg
C Convert your answer to kilotonnes.
484.895 kilotonnes

Using Units of Measurement

Mass and multiplication

Remember!

To change from kilograms to tonnes the number gets smaller (because a kilogram is 1000 times lighter than a tonne) - divide by 1000 .
To change from tonnes to kilograms the number gets larger (because a tonne is 1000 times heavier than a kilogram) - multiply by 1000 .

1. Convert the masses from kilograms to tonnes.
a $7000 \mathrm{~kg}=7$ t
C $\quad 183000 \mathrm{~kg}=$ \qquad t
b 87000 kg
$=$ \qquad t
d 9275000 kg
$=$ \qquad t
2. Convert the masses from tonnes to kilograms.
a $3 \mathrm{t}=3000 \mathrm{~kg}$
C $547 \mathrm{t}=\underline{547000 \mathrm{~kg}}$
b $70 \mathrm{t}=70000 \mathrm{~kg}$
d $1855 \mathrm{t}=\underline{1855000} \mathrm{~kg}$

3 Susan converted the following masses:
$13000 \mathrm{~kg}=13000000 \mathrm{t} \quad 4500 \mathrm{t}=4.5 \mathrm{~kg}$
a How could Susan know that her answers are incorrect?
\qquad
from tonnes to kg the number gets larger
b Complete the conversions correctly.
13 t. 4500000 kg
4. Three trucks are at the depot to be loaded. During their trip they will have to pass over a bridge that has the sign shown. Calculate the mass of each load to determine if they are able to cross the bridge safely.

Truck $\mathrm{A}=10 \mathrm{t}$	Truck B $=25 \mathrm{t}$	Truck C $=35 \mathrm{t}$
Forklift $=7 \mathrm{t}$; 10 pallets each 2 t	10 pallets each 2 t	20 pallets each 1 t
37 tonnes	45 tonnes	55 tonnes
No	$y_{\text {es }}$	$Y_{e s}$

An environmental mass

Remember!

To change from grams to kilograms the number gets smaller (because a gram is 1000 times lighter than a kilogram) - divide by 1000 .
To change from kilograms to grams the number gets larger (because a kilogram is 1000 times heavier than a gram) - multiply by 1000 .
(1) Convert the masses from grams to kilograms.

Convert the masses from kilograms to grams.
a $5 \mathrm{~kg}=\frac{5000}{} \mathrm{~g}$
C $138 \mathrm{~kg}=138000 \mathrm{~g}$
b. $64 \mathrm{~kg}=64000 \mathrm{~g}$
d $1545 \mathrm{~kg}=\underline{1545000 \mathrm{~g}}$
3. If you wanted to convert a mass from tonnes to grams, how would you do this?
multiply by 1000000
4. An environmental group publishes the table below to support their argument that Australia needs to do more to reduce its level of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions per person per year. Use this data to answer the questions.

Country	CO_{2} emissions per person per year (t)
Australia	27
India	2
Kuwait	35
New Zealand	19
Qatar	56
Singapore	11
United Kingdom	11
USA	24

a Which country has the highest CO_{2} emissions per person?
b

How many sacks weighing 70 kg would equal the mass of CO_{2} produced per person in Qatar in one year?

800

The population of India is 1160000000 while the population of Australia is 22500 000. Use these figures to calculate how many tonnes of CO_{2} are produced by each country each year. Which country produces the greater mass of CO_{2} ?
\qquad
India

Mass and you

(1) Calculate the total mass of items in each of the containers shown below.

3.89 kg

10566 kg

9.55
kg
(2) Identify, using a tick (\mathcal{J}), the most appropriate unit to measure the mass of these objects.

Objects	Grams (g)	Kilograms (kg)	Tonnes (t)
Coal burnt in a power station			\checkmark
A cake	\checkmark		
Food for a party		\checkmark	
Bricks to build a new house			\checkmark
A set of dishes		\checkmark	
A computer		\checkmark	
Clothes pegs	\checkmark		
A refrigerator		\checkmark	
Sand for a large sandpit			\checkmark

Each person produces about 700 kg of rubbish each year, which is taken to a local dump site. How many tonnes of garbage are taken to the dump each year in the following places?
a Jerilderie; population 1600
\qquad
b Eurobodalla; population 37000
c Gosford; population 162000
d Sydney; population 4340000
\qquad

What is the mass of each of the planets in the Solar System? The Sydney Harbour Bridge has a mass of approximately 60 t, how many Sydney Harbour Bridges would equal the mass of each planet?

Reading thermometers

1. Read the thermometers shown below, and record your answers in the spaces provided.

$16{ }^{\circ} \mathrm{C}$
b

$26 \quad{ }^{\circ} \mathrm{C}$

C

2. Colour the thermometers shown below to indicate the temperature given.
a $\quad 10^{\circ} \mathrm{C}$

b $\quad 65^{\circ} \mathrm{C}$

C $\quad 47^{\circ} \mathrm{C}$

d $98^{\circ} \mathrm{C}$

3 Food is best kept at temperatures below $4^{\circ} \mathrm{C}$ or above $60^{\circ} \mathrm{C}$. Which of the following restaurants keeps its hot and cold foods at the appropriate temperatures?

Restaurant	Cold food	Hot food
Ethon's Easy Eatery	$2^{\circ} \mathrm{C}$	$56^{\circ} \mathrm{C}$
Flossy's Fabulous Food	$1^{\circ} \mathrm{C}$	$62^{\circ} \mathrm{C}$
Great Big Diner	$5^{\circ} \mathrm{C}$	$64^{\circ} \mathrm{C}$

Flossy's Fabulous Food.

Using a.m and p.m. time

Remember!

- a.m. stands for ante meridiem or before midday
- p.m. stands for post meridiem or after midday.

Look at the time each activity takes place. Place the activities in order, using the numbers 1 to 6,1 being the earliest in the day and 6 the latest.

Write in when you do each activity, using a.m./p.m. time. Students' answers will vary.
a Wake up \qquad b Lunchtime
C Eat breakfast
e Leave for school \qquad
g School starts \qquad
Look at the picture and answer the questions.
a Write the time that is shown on the clock. Use a.m./p.m. notation.

$$
6.38 \mathrm{pm}
$$

b Explain why you have written this time as your answer.
Because it is dark in the picture,
which means it is night.
\qquad
d School finishes
f Dinnertime
h Watch favourite TV show \qquad

Remember!

With 24-hour time:

- Each day begins at midnight, written as 0000 hrs . It can also be written as 2400 hrs .
- Times are recorded as hours and minutes after midnight. So times in the afternoon continue to be counted from midnight.
- 5 o'clock in the morning is 5 hours after midnight or 0500 hrs.
- 5 o'clock in the afternoon is 17 hours after midnight or 1700 hrs.
- There are always 4 digits in the time, with
no colon separating the hours from the minutes. The abbreviation 'hrs' is written after these numerals.
- 9 o'clock in the morning is 0900 hrs .
- 9 o'clock in the evening is 2100 hrs .
- To say the time, the number for the hours and minutes are spoken, followed by the word 'hours'. ' 00 ' minutes is spoken as 'hundred'. For example:
- 0615 hrs is 'zero, six, fifteen hours'.
- 1130 hrs is 'eleven, thirty hours'.
- 2200 hrs is 'twenty-two hundred hours'.

Use the clocks shown and the clues in the passage to complete the story using 24 -hour time notation.

Dear Diary,
It is evening and I'm waiting for my favourite show to start at 2030hrs (1). While I had a minute, I thought I would write about my day. I knew it was going to be 'one of those days' from the moment I woke up this morning and the clock said 0745hrs (2). I'd set the wrong time on my alarm clock! I'd slept in!

The alarm was supposed to be set for 0600hrs (3) so that I could catch the 0650hrs (4) train and be at school in time for morning assembly that begins
 at 0845 hrs (5).

I tried to learve a text message for my netball coach to say I would not be able to make it for practice at | 530 hrs (6), as I had to be at band practice for the school concert at 1540 hrs (7), but this created another problem as it meant I would be late for the train that I usually take at 1605 hrs (8), so that I could get home by 1715 hrs (9).

Got to run, it's 2025hrs (10) and my favourite show is about to start. I hope tomorrow is better. I must check that the alarm clock is set for 0630hrs (11) instead of 0730hrs (12) like this morning!

Using 24-hour time

1 Write the time on each clock in a.m./p.m. and 24-hour time notations.
morning

$$
\text { a } \frac{1020}{10: 20 \mathrm{am}}
$$

afternoon

afternoon

b $\quad 1435 \mathrm{hrs}$ $2: 35 \mathrm{pm}$
morning

e 0730 hrs 7:30 am
night

C $\frac{2150}{9: 50 \mathrm{pm}} \mathrm{hrs}$
night

$\pm \frac{0035}{12: 35} \mathrm{am}$
2. The agenda for a school holiday program is shown below. Use it to answer the questions.

Time	Activity
7:00 a.m.	Arrival; free play
8:00 a.m.	Pottery
9:45 a.m.	Morning tea
10:10 a.m.	Go-kart excursion
1:00 p.m.	Lunch
1:30 p.m.	Games and sport
3:30 p.m.	Afternoon tea
4:00 p.m.	Painting and drawing
5:30 p.m.	Close

a What time does the first activity begin? \qquad
b What is happening at 1425 hrs?

Games and sport
C If it takes 10 minutes to walk to the go-kart track and 10 minutes to walk back, how much time do the children have at the track?
$2 h r s 30$ minutes
d If you attend the program all day, how many hours are you there?

10 hrs 30 minutes
e How much time is allocated for meals?
1hr 25 mins

Imagine you are the co-ordinator of a school holiday program like the one above. Design an agenda for a week.

IV guide timings

(1) Look at the TV program guide. At what time do the following shows begin?
a The Romance Boat

$$
8.00 \mathrm{pm} \text { or } 2000 \text { hrs }
$$

b Porridge Wars
10.00 am or 1000 hrs
c $\quad P^{*} O^{*} T^{*} A^{*} T^{*} O^{*} E^{*} S$
7.00 pm or 1900 hrs
d Golf
10.35 pm or 2235 hrs
(2) How long are each of the following shows?

a Oscar Fly	$\frac{30 \text { mins }}{1 \mathrm{hr}}$
b Captain McPain	$\frac{1 \mathrm{hr} 50 \text { mins }}{25 \text { mins }}$
c The Days Are Long	

Program the DVD recorder, in 24-hour time, so that it will record: Taco Man, I Quite Like Suzy - The Reunion, Bridge to the Other Side and Australia's Next Top Pastry Chef.

Program	Start time	Finish time
Taco Man	0600 hrs	0635 hrs
I Quite Like Suzy	0830 hrs	0900 hrs
Bridge to the Other Side	1200 hrs	1400 hrs
Australia's Next Top Pastry Chef	1710 hrs	1810 hrs

The DVD that is used to record these shows, will hold 2 hours in 'short play', 4 hours in 'long play' or 6 hours in 'extra long play'. Which mode should be set on the DVD recorder so that all the shows in Question 3 will fit on the one DVD?
extra long play

6:00 a.m. Taco Man (G)
6:35 a.m. Where's My Soup? (G)
7:00 a.m. First Chicken in Space (G)
7:30 a.m. Oscar Fly (G)
8:00 a.m. Rick Gold's Grand Adventures (PG)
8:30 a.m. I Quite Like Suzy The Reunion Comedy. Suzy is reunited with her long lost love, Bobby, only to find that he'd rather play with his kelpie, Boris, than get married. (G)
9:00 a.m. Captain McPain Action/Adventure (PG)
10:00 a.m. Porridge Wars (PG)
11:00 a.m. Greener Pastures Drama (PG)
12:00 p.m. Bridge to the Other Side A family uncovers a long, lost secret at a travelling circus. Danger and hilarity ensue. (M)
2:00 p.m. The Days Are Long Will Jason finally propose to Maria, or will Ken and Kim be able to stop him before it's too late? (PG)
3:50 p.m. Curse of the Jade Monkey (PG)
5:10 p.m. Australia's Next Top Pastry Chef (PG)
6:10 p.m. The Papier-Mâché Club Episode 5 of this 12-part series that delves into the dark and often misunderstood world of papier-mâché clubs. (PG)
6:35 p.m. The Sparkly Vampires (PG)
7:00 p.m. P*O*T* ${ }^{*} T^{*} \mathbf{O}^{*} \mathrm{E}^{*} \mathrm{~S}$ (PG)
7:30 p.m. Everybody Loves Jeremy (PG)
8:00 p.m. The Romance Boat A group of 12 twenty-somethings, one boat, nowhere to run. Will sparks fly? (PG)
8:30 p.m. A Fridge Too Far (PG)
10:35 p.m. Golf Replay of today's highlights of The Springfield Pro Classic. (G)

How long does it take?

1. Work with a partner. Use a stopwatch to record how long it takes you and your partner to complete each activity. Students' answers will vary.

Activity	Your time	Partner's time
Hold your breath		
Do 10 sit-ups		
Sary the table of fives		
Sing 'Twinkle Twinkle Little Stor'		
Walk from your classroom to the school office		
Write your name 10 times		
Dribble a basketball around the outside of a basketball court		
Roll 2 dice 20 times		

2. Use the internet or other resources to find out how long each event lasts.
a Olympic 100 m sprint:
men
women
b A game of soccer
C An Olympic 1500 m freestyle swimming race:
men
women
Students
answers
\qquad
will
vary.
men \qquad
d The Boston Marathon:
\qquad
e A game of netball
f The Paris to Dakar Rally
\qquad
g Jupiter's orbit of the Sun
\qquad
g Jupiter's orbit of the Sun
3 Use the start and finish times to calculate how long each of the following lasted.

Activity	Start time	Finish time	Time it lasted
Rugby union game	1900 hrs	2030 hrs	$1 \mathrm{hr} \mathrm{30mins}$
Walk to school	8:00 c.m.	8:20 c.m.	20 mins
Maths lesson	1100 hrs	1200 hrs	1 hr
Cor journey to the snowfields	7:00 a.m.	9:45 a.m.	2 hrs 45 mins
Movie	1330 hrs	1545 hrs	2 hrs 15 mins
A music album	3:45 p.m.	4:35 p.m.	50 mins

A sponge pudding mix gives the directions on the right.
a How long should the mixture be mixed on medium speed? \qquad
1 minute
b How long does the pudding have to be baked for?

35-40mins
C If the pudding is put in the oven at 5:45 p.m., what is the earliest time that it would be ready to eat?
6.20pm
d If the pudding needs to be ready for dessert at 8:30 p.m., what time should it be put in the oven?

$$
7: 50 \mathrm{pm} \text { the latest }
$$

Preheat the oven to $180^{\circ} \mathrm{C} / 350^{\circ} \mathrm{F}$

Pour sponge pudding mix into a large mixing bowl with egg and 3 tbsp water. Mix, using an electric mixer on low speed, until the ingredients are combined.
Mix for I minute on medium speed, scraping down the sides of the bowl occasionally.
Pour batter into a greased cake pan. Sprinkle contents of sauce sachet over batter evenly.
Pour $1 \frac{2}{3}$ cups of boiling water over the mix.
Bake for 35-40 minutes.

Ready-mixed plaster, for filling small holes in walls must be left 48 hours to set before it can be sanded or painted. If you finish filling a hole at 4:00 p.m. on Saturday, what is the earliest time that you could start painting the wall?

> 4.00p.m on Monday

It takes 50 minutes for a washing machine to complete a load of washing. A drier takes 90 minutes to dry a load of washing. It takes 5 minutes to load the washing machine and another 5 minutes to transfer the washing from the washing machine to the drier.
a How long does it take to wash and dry a load of washing completely?
b If you want to wear the clothes at 3:00 p.m., what is the latest time that you must start doing the washing?

$$
12.30 \mathrm{pm}
$$

C How many complete loads of washing could be finished between 9:00 a.m. and midday?

3 loads.

(1) On the map, colour those states and territories red that use Eastern Standard Time.
(2) On the map, colour those states and territories blue that use Central Standard Time.
3) On the map, colour those states and territories yellow that use Western Standard Time.
(4. If it is 4:00 p.m. in Sydney, NSW, fill in the spaces on the map with the times in all the states and territories.
5 Complete the following statements.
a 9:00 p.m. in Adelaide is 9:30pm in Cairns and 7:30pm in Perth.
b 0600 hrs in Brisbane is 4:00am in Port Hedland and 5:30am in Darwin.
c 10:25 a.m. in Alice Springs is 10:55am in Canberra and 10:55am in Hobart.
d 2330 hrs in Perth is 1:00am in Adelaide and 1:30am in Melbourne.
e 2:37 p.m. in Sydney is 12:37pm in Perth and 2:07pm in Alice Springs.
f 1614 hrs in Port Hedland is $5: 44 \mathrm{pm}$ in Darwin and $\mathbf{6}_{\mathbf{6}: 14 \mathrm{pm}}$ in Cairns.
6 The grand final is being broadcast live on television. If it is being held in Adelaide, starting at 1730 hrs , what time will it begin in:
a Melbourne \qquad b Perth 3:00pm

Identifying prisms

(1) Identify with a tick ($\mathcal{\checkmark}$) which of the objects look like prisms.

Hint!

A prism has rectangular sides.
a

C

d
b

2. What key feature/s does an object need in order to be a prism?

It needs to have rectangular sides.
3 Complete the table about how prisms a and b are the same and how they are different.

a

How they are the same	How they are different
both have rectangular sides	differently shaped ends
	different number of edges
	different number of faces
	different number of vertices

Describe one of the prisms that is drawn on this page to a classmate. Ask them to identify it by pointing to it. What information about the prism did you find must be given to identify it correctly?

Naming prisms

1. Identify and colour the bases of each of the prisms.
a

b

C

d

e

f

g

h

i

2. Write the name of each of the prisms from Questions la-g.

a	Octagonal prism	b	pentagonal prism	C	square prism
d	hexagonal prism	e	triangular prism	f	cube
g	rectangular prism	h	arrow-shaped prism	i	star-shaped prism

3 In your own words, describe how to identify the 'base' of a prism.
\qquad while the sides are all rectangles

4 Rani drew this prism and named it a 'rectangular prism'. Explain to Rani how she should name prisms and write the correct name under the one that she has drawn.

The name of the prism comes from the base.
This is a triangular prism.

1. Draw lines to match the prisms to the drawings of their nets.

Remember!

Nets are flat shapes that can be folded to make 3D solids.
a
b

C

d

iv

2
Name the prisms and draw a net for each.

a

rectangular prism

hexagonal prism

Shetching prisms

1. Name each prism in the space provided. Draw each of the prisms from two different views: the first view with a vertical edge to the front (the first one has been started below) and the second view from the front, showing depth. Write the name of each prism in the space provided.

Name: rectangular prism

C

Name: \qquad
d

Name: \qquad hexagonal prism

Shape

Identifying pyramids

1. Identify with a tick (\mathcal{J}) which of the objects look like pyramids.

What key feature/s does an object need to be a pyramid?
\qquad
3 Draw the cross section that is produced when these pyramids are cut as shown.

4. Complete the table about how the pyramids are the same and how they are different.

How they are the same	How they are different
Flat base	Different no. of sides
Comes to an apex	Different no. of edges
	Different cross-sections

Naming pyramids

1 Identify and colour the base of each of these pyramids red.
a

b

e

h

i

2) Write the name of each of the pyramids from Question 1.

a	square pyramid	b	hexagonal pyramid	C	triangular pyramid
d	hexagonal pyramid	e	octagonal pyramid	f	rectangular pyramid
g	triangular pyramid	h	square pyramid	i	pentagonal pyramid

3 In your own words, describe how to identify the 'base' of a pyramid.
The base is the face of the pyramid on the opposite

Describe one of the pyramids that is drawn on this page to a classmate. Ask them to identify it by pointing to it. What information about the pyramid did you find must be given to identify it correctly?
(1) Draw lines to match the pyramids to the drawings of their nets.

b

d

2. Name the pyramids and draw the net for each.

a

\qquad

b

pentagonal pyramid

Can you draw more than one net for a pyramid? How many different nets can you draw for a
rectangular pyramid? For a pentagonal pyramid? For a hexagonal pyramid?

Sketching pyramids

1 Name each pyramid in the space provided. Draw each of the pyramids from two different views: the first view with a vertical edge to the front (the first one has been started below) and the second view from the front, showing depth.

Name: triangular pyramid
b

Name: \qquad square pyramid

Name: hexagonal pyramid

Name: \qquad octagonal pyramid

Shape

Drawing top, side and front views

1 Draw the top, front and side views of each of the solids.
Side view

Compare your drawings with a classmate's. Discuss how they are the same and how they are different.

Identifying solids from drawings

1 Indicate with a tick $(\boldsymbol{\checkmark})$ which picture of the solids is represented by the picture of the top, side and front views.

1. Draw and name the solids represented by each set of top, side and front views.
(ap view Side view

Name:
triangular prism

Name:
square pyramid

Name:
octagonal pyramid

Name:
hexagonal prism

What hints would you give someone else who is about to start this activity?

Shape

Properties of the sides of triangles

1. Measure the sides of these triangles in millimetres and record as shown.
a

b

C

e

d

f

Look at the 3 side lengths of each triangle of Question 1. Decide which description in the table represents these 3 side measurements. Write the letter of the triangle next to the description you have chosen in the 'Examples' column.

Triangle name	Description	Examples
Scalene	No sides the same length	d.
Isosceles	2 sides the same length	c, b, f
Equilateral	3 sides the same length	a, e

3 If you wanted to identify a right-angle triangle, could you do so by measuring the sides? Why/why not?

No, because the sides could be many different lengths with the same angles.
(Note: students have not learned about Pythagoras' Theorem yet.)

Properties of triangles

Use geostrips, a geoboard or triangles cut from paper to complete these activities. Construct equilateral, isosceles, scalene and right-angle triangles. Look at each triangle and manipulate it to help you answer the following questions. Record your answers in the space provided. Students answers will vary.

1. Does this triangle have any lines of symmetry? Draw a picture to show any lines of symmetry.

2 Does this triangle tessellate? If so, draw a section of the tessellated pattern.
Remember to label each triangle you draw as equilateral, isosceles, scalene or right-angle.

Properties of quadrilaterals

1. Name each quadrilateral in the space provided.

Remember!

A quadrilateral is a two-dimensional shape with four sides.

\qquad
\qquad

parallelogram

\qquad
\qquad
rhombus rectangle
\qquad
parallelogram

2 Which quadrilaterals have only right angles?
\qquad
3 What pattern can you see in the angles of the other quadrilaterals?
The angles match across the diagonals.
4. Complete the table.

	How are they the same?	How are they different?
Square and rhombus	All sides are the same length	Different angles
Square and rectangle	They only have right angles	Different side lengths
Rectangle and parallelogram	Short ends and long sides	Different angles
Rhombus and parallelogram	They only have non-right angles	Different side lengths

Design a tree-diagram or a flowchart that can be used to classify quadrilaterals.

Circles

Circles are shapes that are formed by connecting points that are the same distance away from a central, fixed point.

1. Describe the difference between a circle and an oval. Draw a diagram to help explain the difference.
A circle is an equal distance
all the way around from the
central, fixed point. An oval is
narrower in some parts and
wider in others.

2. Use the words in the box to label the diagrams of the circles.

3 Measure the diameter of each circle below. Record your answer and use it to calculate the radius of the circle.

a diam
radius
Shape

Constructing circles

1 Work with a partner. Use a ruler or tape, a piece of string and a piece of chalk to make each of the 6 circles described below in a concrete area at your school.
a diameter l m
b radius 1 m
d radius 235 cm
e diameter 5 m
C diameter 235 cm
f radius 5 m

2 Describe in the space below how you and your partner constructed the circles in Question 1. Draw a diagram in the space to help you explain.
\qquad
One person stands still.
The second person stands the
required distance away.
The two students draw the string
\qquad
\qquad

3 Construct the following circles in the space below using a compass.
a diameter 5 cm
b radius 1 cm

4. The pendulum of this clock is the section that hangs below the face and swings from side to side. Imagine that the pendulum could swing the whole way around the clock to make a circle.
a What part of the circle is the pendulum? \qquad radius
b Where is the centre of the circle? Mark it on the picture.
Centre of the clockface

Regular and irregular shapes

1 Use geoboards or paper to construct each pair of shapes. Then use rulers, protractors and paper to help you investigate these shapes and complete the tables.

b

Look at:	Square	Irregular quadrilateral
Sides (number)	4	4
Corners (number)	4	4
Angles (number)	4	4
Diagonals (number)	2	2
Side length (same/diff)	same	diff
Angle size (same/diff)	same	diff
Lines of symmetry	4	0
Rotational symmetry	Yes/no	yes/®O

Look at:	Pentagon	Irregular pentagon
Sides (number)	5	5
Corners (number)	5	5
Angles (number)	5	5
Diagonals (number)	5	5
Side length (same/diff)	same	diff
Angle size (same/diff)	same	diff
Lines of symmetry	5	0
Rotational symmetry	(VeS)/no	yes/nO

d

Look at:	Hexagon	Irregular hexagon
Sides (number)	6	6
Corners (number)	6	6
Angles (number)	6	6
Diagoncls (number)	9	9
Side length (same/diff)	same	diff
Angle size (same/diff)	same	diff
Lines of symmetry	6	0
Rotational symmetry	Fe9 $/$ no	yes/no

Look at:	Octagon	Irregular octagon
Sides (number)	8	8
Corners (number)	8	8
Angles (number)	8	8
Diagonals (number)	20	20
Side length (same/diff)	same	diff
Angle size (same/diff)	same	diff
Lines of symmetry	8	0
Rotational symmetry	Yes/no	yes/no

Comparing and identifying shapes

1 Use pattern blocks or shapes made of paper to complete the following. You will need an equilateral triangle, a regular hexagon, a regular pentagon, a regular octagon and a square.
a Order these shapes by how many internal angles they have, from largest number to smallest number.
\qquad
\qquad
b Order the same shapes by the size of one of their angles, from smallest angle to largest angle.
\qquad
equilateral triangle

C Where would a regular decagon, a shape with 10 sides, fit in the lists of parts a and b ?
\qquad
\qquad
2. Construct each of the following shapes on a geoboard. Name the shape and draw it in the space provided.
a 3 angles; 2 the same b

- 4 angles opposite angles
C 8 angles; no angles are equal
- opposite sides are equal length
\qquad
isosceles triangle \qquad
rectangle \qquad
3 What shape am I? I have 3 diagonals from each of my corners, 6 lines of symmetry and rotational symmetry order 6. I am a
\qquad
hexagon .

Look at the map and answer the questions below.

1. What feature is located at the following references?

a	Cl2	post office
C	B6	church
e	D13	shop

b F8
d \quad I4
f A9
\qquad
(2) At what grid references are the following located?
a Memorial \qquad b Bridge
El 6
c Cinema
d Sports club
e Bowling club
Gll
f Police station
a Draw on the map the route you would take to get from the primary school to the playground.
b Write a set of instructions for getting from the primary school to the playground for someone to follow if they did not have a map.

Walk down River St. as far as the meeting hall then turn left.
Keep going up Leigh St and the playground will be on the right.
C Compare your route with a classmate's. How are your routes the same? How are they different?

Students' answers will vary.

Seating at the cinema

The seating plan of Cinema 6 at the local movie theatre is shown below.

1 Colour the seats as directed.
a A6-red
b H10 and the 2 seats to its left - orange
C J8 and J9 - green
d. E9 and the 4 seats to its right - purple
2. The local senior citizens club has tickets D3 to D10 as well as all of row I. How many people are there in the group?
3. What is the total seating capacity of this cinema?
4. Seats K2 and K14 are reserved for whom?

5 Which seats are the following locations?
a 2 rows behind E5 and 7 seats to the right
G12
b In the middle of the back row
C 4 rows from the front, in the middle of the row D8

Draw a plan like the one above for a cinema close to you. What is the seating capacity? Are the seats and rows identified in the same way as in this cinema?

A section of the Sydney train network is shown below.

1. Which stations are located on either side of:
a Westmead
b Meadowbank \qquad
West Ryde, Rhodes
2 Eastwood, Burwood, Strathfield, Lidcombe, Clyde, Granville, Parramatta, Westmead and Blacktown stations all have white oval symbols that cross some or all of the coloured lines. \Perp What do you think this symbol indicates?

interchange between trainlines

(3) Maria is travelling from Ashfield to Regents Park. Which stations does she pass through?

Croydon, Burwood, Strathfield. Homebush, Flemington, Lidcombe, Berala

4 If Stephen wants to travel from Fairfield to Carlingford, will he need to change trains? If so, at which station/s could he do so?

Yes Granville then Clyde

Watching sport

The following is a seating plan of the grandstand at the local sports centre.

1 Colour the seats as directed.
a Jl0-orange
b A15-blue
e T4-yellow
C Q18-green
d M2-red
h W10-black
f Z12 - pink
g F20 - purple
2. The local football club has tickets P 8 to P 17 as well as X 3 to X 15 . How many people are there in the group?

23 people

(3) Which of the following seats is closer to the front?
a B4 or M6 \qquad b V7 or Wl4 \qquad c L10 or H3 \qquad
(4) Which of these seats is on the end of a row?
a Ll or Pll \qquad b Sl or Y9 \qquad c O 20 or U5 \qquad 020

5 Which seat is in the following location?
a 5 rows behind E4 and 3 seats to the left \qquad
b 2 rows in front of H 6 and 10 seats to the right \qquad
Fl 6
C 4 rows behind C13 at the far right of the row
G20

6 If you were booking seats in this grandstand for yourself and a friend, which seats would you choose and why?
\qquad
\square
\qquad

Fouring in the country

Look at this map of north-west NSW, and then answer the questions below.

Remember!

Grid squares are named by the lines that intersect at the bottom left-hand corner of the square.
For example:
The black square is named AI , while the pink square is B 3 .

(1) Colour each of the grid squares as indicated.
a E5-blue
b F10-orange
C Jl-yellow
d J12-red
e A17-purple
f ClO-pink

What town is located at the following grid references?
a G8 \qquad b H7 \qquad Lightning Ridge
C H 12 \qquad d El6 \qquad

3
At what grid reference are the following towns located?
a Cobar
C3
b Coonabarabran \qquad
DII
c Warialda HI4
d Coonamble
D9
(4.) a Draw a route from Moree to Nyngan on the map.
b Write instructions for a person without a map to get from Moree to Nyngan.

Drive south from Moree until Coonabarabran, then bear west and pass through Gilgandra. Warren and Collie until you reach Nyngan.

Location and Transformation

Iravelling around

Look at this map of NSW, then answer the questions below.

(1) Mark the following grid squares with a cross (\boldsymbol{x}).
D8 J2 H6 C5 G7 K5
(2) What town/city is located at the following grid references?
a Ab \qquad b I4 \qquad
C F3 \qquad d H 2

3
At what grid reference are the following towns/cities located?
a Dubbo \qquad b Bega \qquad C West Wyalong \qquad
(4.) Josephine wants to travel from Mildura to Dubbo.
a Draw two possible routes for this trip on the map, in red and blue.
b If Josephine stops and visits her aunt, who lives in Narrandera, list the towns she would pass through on her trip to Dubbo.

Balranald, Narrandera, West Wyalong, Parkes
(5) Felix lives in Broken Hill and is going for a holiday to Ballina. Draw a route on the map in green that he can take if he wants to stop and visit friends in Parkes and Port Macquarie on his way.

Hake a trip around Australia

Look at this map of Australia and answer the questions below.

(1) What town/city is located at the following grid references?

a	ER	Geraldton	b	Gl	Gladstone
C	IS	Wyndham	d	H8	Mt $I_{\text {sa }}$

At what grid references are the following places located?
a Lake Eyre F8
b Normanton I9
c Hobart
A IO
(3) a What is the first town that is south-west of Darwin on this map? \qquad Wyndham
b Draw a line from Cairns going due south. What feature does this line pass through?

Canberra
C If you travel west from Gladstone to the other side of Australia, what town would you be closest to?

Carnarvon
4 Sailors aboard a yacht radio for help, as they are sinking quickly. They do not know their exact position, but they are in the Indian Ocean, somewhere south of Albany and Esperance. In which grid squares should the navy look for them? Give a reason for your answer.

$$
C 3, C 4, B 3, B 4, A 3, A 4
$$

These squares are all south of the two towns.

Be a world traveller

Here is a map of the world. Study it and then answer the questions below.

(1) Ishmael is having trouble locating grid square M1l on the map. Colour this square green and provide written instructions on how to locate this grid square.

2 grid squares north of Anchorage.
2. Which city is located at the following grid references?
a H7
Beijing
b R5

Caracas
3 Give the grid references for these cities.
a Dakar \qquad b Tokyo
J7
C Lima \qquad
(4.) Draw on the map the following routes as directed.
a Travelling by air, in red: London - Rome - Delhi - Singapore - Hong Kong - Honolulu - Los Angeles - New York - Buenos Aires.
b Travelling by road, in brown: Dakar - Johannesburg - Nairobi - Dubai Baghdad - Moscow - Stockholm.
5. If you travelled due east from Baghdad, in which city would you end up?

Transformations

A transformation changes a shape's position, size or shape by flipping, spinning, sliding, enlarging, reducing and/or distorting it. The following are some types of transformations.
Translation: A translation is the movement (relocation) of a shape in a straight line. A translation involves no other transformation, so the shape is not reflected, rotated or resized.
Rotation: Rotation involves the turning of a shape around a central point.
Reflection: The shape is flipped, to produce a mirror image of the original shape. A reflection can be done in a horizontal or vertical plane.

1) a Translate 2 to the right and 3 up.

C In the adjacent grid, rotate this shape 180° around its centre.

b Reflect on the dotted line.

d Translate 4 to the right.
Then reflect on the dotted line.

Some shapes have lines of symmetry. A line of symmetry divides a shape into two equal halves. Both of these halves are the same shape, only reflected. Some shapes have no lines of symmetry; others have more than one.
line of symmetry

Draw in all the lines of symmetry that you can find on the following shapes. Some may not have any lines of symmetry.

b

g

Rotational symmetry

A shape has rotational symmetry if it 'matches' itself after being rotated.

The order of rotational symmetry is how many times it 'matches' itself before returning to its original position. The triangle above has rotational symmetry of order 3 because it matches itself 3 times while being rotated, including its original position.

Use pattern blocks, geostrips, geoboards or copies of these shapes cut from paper to help you complete the following.

1. Which shapes have rotational symmetry? Colour these shapes red.
2. For each shape that has rotational symmetry, identify the order.

Equilateral triangle \qquad 3

Square $\quad 4$

Pentagon \qquad

Scalene triangle \qquad
Isosceles triangle \qquad

Trapezium \qquad

Irregular hexagon \qquad -

Parallelogram \qquad

Octagon 8

Scale drawing

When making enlargements or reductions of pictures, we describe how much the picture is to be enlarged or reduced using a scale.
A scale is a number that describes how to change the measurements of the picture vertically and horizontally. A scale greater than I is an enlargement, while a number smaller than I is a reduction.

1
Enlarge or reduce each of the pictures as described.

Shape 2

scale to $\frac{1}{2} \quad$ scale to $\frac{1}{4}$

scale to 2
a Describe what has happened to the length of the sides in each case.
Shape 1 Each side is multiplied by the scale factor

Shape 2 Each side is multiplied by the scale factor
b Has anything happened to the angles in each shape?
Shape 1 \qquad

Shape 2 \qquad They do not change

C Describe what has happened to the area of each shape.
Shape 1 The area is multiplied by the square of the scale factor. $\left(\times \frac{1}{4}, \times \frac{1}{8}, \times 4\right)$

Shape 2 The area is multiplied by the square of the scale factor. $\left(\times \frac{1}{4}, \times \frac{1}{8}, \times 4\right)$

Cartoon fun

Another way to do enlargements or reductions is to use a grid. The original object has a 1 cm grid put over the top as shown below. The grid is then re-drawn to size according to the scale. The picture is then drawn using the new grid.

1 Redraw this picture on the grids provided.
a

scale to $\frac{1}{2}$
b

scole to 2

1. Here are a set of angles indicated by the arrows. Classify, estimate and accurately measure each of the angles and record your results in the table below.

Angle	Type	Estimate	Measure
\mathbf{a}	acute		48°
b	obtuse		122°
c	reflex		338°
d	straight line		180°
e	acute		27°

Angle	Type	Estimate	Measure
\mathbf{f}	reflex		202°
\mathbf{g}	acute		42°
\mathbf{h}	acute		90°
\mathbf{i}	obtuse		159°
j	rotation		360°

Write a set of instructions on how to use a protractor to accurately measure an angle. What are the key pieces of information that someone would need to know?

Constructing angles

1. Construct the following angles with a protractor. Make the arms 4 cm in length.

j 200°

Angles are measured with protractors. Remember that you can read protractors from both ends.

1. Measure all the angles of the triangles and record them as shown in a.

Remember!

An equilateral triangle has three sides the same length and three angles the same size. An isosceles triangle has two sides the same length and two angles the same size. A scalene triangle has no sides the same length and no angles the same size. The right-angle triangle has one right angle $\left(90^{\circ}\right)$.
2. Look at the 3 angles of each triangle in Question 1. Decide which description/s in the table matches the 3 angles. Write the letter of the triangle next to the description you have chosen in the 'Examples' column. The angles of the triangle may fit more than one description. See below for an example.

Triangle name	Description	Examples
Scalene	No angles are the same.	a , f. b, c
Isosceles	2 angles are the same.	e
Equilateral	3 angles are the same.	d
Right-angle	One angle is 90°.	a , b. c
Acute	All angles are acute angles.	d

Introducing divided bar graphs

1 Use the divided bar graph to answer the following questions.

a What is the largest number of silver medals won by the Australian team? In which year?

25 silver medals in 2000
b Which Olympic Games do you consider to be the Australian team's 'most successful'? Give a reason.

Students' answers will vary.
2. A teacher graphed the absences of their students for Term 1 and Term 2. The results are shown in the divided bar graph below. Students' answers will vary.
a Decide on a name for this graph and write it in the space provided.
b Suggest a reason why Natalie had many more absent days in Term 1 than in Term 2.
\qquad
\qquad
c How could the teacher use this groph?

Divided bar graphs

1 Use the divided bar graph to answer the questions.
SA agriculture production

a In what year did SA have its largest production of wheat?

2010
2.2 million
b List in order, from best year to worst year, corn production in SA.

$$
2010,2009,2011,2008
$$

2. The table and graph show how many people in each Year 5 group were born in Australia or overseas.

a Use the information in the table to help you complete all the missing labels on the graph and in the key.
b Write a question that can be answered using this graph.

Introducing sector (pie) graphs

A sector or pie graph is a circle that has been divided into parts. The parts are usually coloured differently to make them easier to see and often have a percentage value written on each part.

1 Use the pie graph to answer the questions.

Age at first swimming lesson

a What percentage of children had their first swimming lesson before their first birthday? 37%
b Which two age groups had the same number of children starting lessons? 1-2 years and 2-3 years.

In which country has this data most likely been collected - England, USA or Australia? Give a reason.

2 This sector (pie) graph was constructed from a survey conducted among travel agents. It shows the destinations that most families went to on their holidays.
a Write a title on the graph.
b Where is the most popular holiday destination?
\qquad
C List the destinations in order, from most popular to least popular.

Gold Coast, New Zealand, Other, Fiji, USA
d List 5 locations that could have been included in the category 'other'.

Students' answers will vary.

Suggest a reason why the USA is not a more popular holiday

Family holiday distinations

Key

Gold Coost, QLD
New Zealand
\square Other
\square Fiji
USA

Sector (pie) graphs

1. The Transport Department surveyed school students about how they get to school each morning. The results are shown in the pie graph.

How students travel to school

a What percentage of students catch the train to school?

$$
35 \%
$$

b Do more students walk than take the bus?

No
C Suggest a reason why the Transport Department conducted this survey.

Students' answers will vary.
d Write 3 other questions that can be answered using this pie graph.
Students' answers will vary.
ii \qquad
iii \qquad
2 A florist recorded the type of flowers that were purchased from her business during one year. The results are shown in the table and incomplete sector (pie) groph.

Flower	\% of yearly total
Roses	50%
Carnations	25%
Native flowers	10%
Lilies	10%
Other	5%

a Label, colour and complete the key of the sector (pie) graph using the information given in the table.
b How can the florist use this information to help run their business?
\qquad
Students' answers will vary.
\qquad
\qquad
C What results would you expect if you conducted this survey at a different florist's shop?

> Students' answers will vary.

Data

Comparing graphs

1 Collect data from your class in the table below. Students answers will vary.

Favourite colours of Year 5

Colour	Tally	Score	Percentage
Red			
Blue			
Green			
Yellow			
Other			
Total			

2. Present this data as a column graph and as a sector (pie) graph.

3 a How are these graphs the same?
\qquad
\qquad
\qquad
b How are these graphs different?
\qquad
\qquad
\qquad

Dot plots and graphs

A scientist has collected a sample of mould growing on a sandwich found in a student's schoolbag. Ten different types of mould grew.

1 Count how many of each kind of mould colony you can see in the dish, and complete the table on the right.

Type of mould colony	Number of colonies
Red	12
Orange	8
Yellow	9
Green	10
Blue	11
Purple	11
Grey	11
White	10
Pink	11
Brown	

2 Display your data on this dot plot and column graph. Give the graphs titles.

3 Which type of graph do you think shows this information better?
Students' answers will vary.

Which graph?

Shown above are 6 different ways of presenting data. Look at each of the situations below, and decide which way you would choose to present that data. Give a reason for your choices. Students' answers will vary.
1.
car sales from month to month
\qquad
\qquad
2 the number of sunny, rainy and cloudy days this month
the results from rolling a dice 50 times
\qquad
\qquad
the heights of the students in your class
\qquad

Chance events

(1) Place the spinners in order, by numbering the boxes, from those least likely (1) to spin green to those most likely (6) to spin green.

(2) Re-order the events in the table. Put them in order from those that are most likely to occur to those that are least likely to occur.

Events	Re-ordered events
Be at school next week	Be at school next week
Go on a holiday	Watch a movie
Win a million dollars	Go swimming tomorrow
Go swimming tomorrow	Go on a holiday
Watch a movie	Win a million dollars

At Oliver's birthday party, a game is played where you have to pick up jellybeans from a plate using chopsticks, while blindfolded.
a Using fractions describe the chance of choosing:
a pink jellybean from the plate a purple jelly bean from the plate a blue jelly bean from the plate an orange jellybean from the plate
$\frac{\frac{4}{10}}{\frac{\frac{3}{10}}{\frac{2}{10}}} \frac{\frac{1}{10}}{-}$

b What is the chance of choosing a green jellybean? \qquad
C Add all the answers from Question 3a and describe what this result tells you about probability.
probability $=1$
d Place and label each result from Questions $3 a$ and 3b on this number line.

Investigating spinners

Look at the spinner.

1. Make a spinner like this, with 4 colours which do not have an equal chance of occurring. Students' answers will vary.

2 List the 4 colours in order from least likely to most likely
 to occur when the spinner is spun.
3. Spin the spinner 50 times and record your results in the table.
(4) Based on your results in Question 3, list the 4 colours in order from least spun to most spun.

COLOUR	TALLY	SCORE

5. Compare these results to your prediction in Question 2. How are they the same/different?
\qquad
\qquad
6. Spin the spinner another 50 times. Record your results in the table.
(1) List the 4 colours in order from least spun to most spun from the results of your 100 spins.

COLOUR	FIRST SCORE (from above)	TALLY	TOTAL SCORE

\qquad
8 How has the order changed?

9 If you spun the spinner another 50 times, how would this affect the order of the colours?
\qquad
\qquad
Add the results from another group to yours. What happens as you increase the number of spins?

Chance

1 Each of the bags below contains an assortment of coloured marbles. Place the bags (labelled A to F) in order on the scale, indicating the likelihood that the next marble from each bag will be:

a Purple

Least likely \qquad E B

F
D
b Yellow

Least likely $\begin{array}{llllll}\text { A } & E & \text { C } & \text { F } & \text { D } & \text { B }\end{array}$
2. Match each event with the appropriate numerical value to describe its likelihood.

A coin will land on tails:
A dice will land on 4 a card drawn from a pack will beajack.
A domino drawn will be a double.
Two dice will land on a score of 10 .
3 Design a spinner with a greater than 50% chance of spinning red. It must also contain the colours orange and blue, where blue has a greater chance of being spun than orange.

Use the spinner below to help you complete these statements.
a There is a greater than 50% chance the arrow will land on red or green.
b There is a \qquad greater chance the arrow will land on yellow rather than on blue.

C The colour with the least chance of being landed on is \qquad .
d There is an equal chance the arrow will land on
\qquad and \qquad green .

Rolling with the dice

1. The results of rolling a single die 120 times are shown in the table.
a Complete the table by reading the tally marks and recording the score.
b Given that the die rolled was fair, how many times would you expect each number to occur?

$\begin{gathered} \text { DIE } \\ \text { VALUE } \end{gathered}$	TALLY	SCORE
1	HIT HIIT HIT HII HIT	25
2	HHT HHT III	13
3	HH HHT I	11
4	HIT HIH HIH HIHT HIT HIT II	32
5	HHT HIH HHT HIH I	21
6	HIH HIH HIH HIHT HIH HIH HH H\# HH	45

C What would you expect to happen to the results in the table if the die was rolled another 120 times?
Each value would come up 20 times, so we would add 20 to each
score in the table.
2 Crown and Anchor is a traditional game of chance that uses 3 dice. Use the internet or another information source to research this game. Use your information to complete the questions. Students' answers will vary.
a Who traditionally played the game Crown and Anchor?
b By what names are other versions of this game known? Which countries are they played in?
\qquad
\qquad
C Describe how the dice that are used for this game look. Complete the net diagram of one of the dice.
\qquad
\qquad
\qquad

