Odd and even

1 Place the numbers into the correct box in the table.

	odd	even	3234	4009	342	117
3-digit numbers	$\begin{array}{ll} 117, & 631 \\ 707, & 667 \end{array}$	$\begin{array}{cc} 342, & 440, \\ 998, & 354 \end{array}$	440	5452	3881	2091
			998	631	7000	354
			707	8125	7778	667
4-digit numbers	4009.	3234.				
	3881.	5452.				
	2091	$\begin{gathered} 7000, \\ 7778 \end{gathered}$				

Is 1004 an odd or an even number? \qquad Explain why. It can be evenly divided into two groups

3 Choose numbers from the box to investigate adding odd and even numbers. The first one has been done for you.

27	54	37	62	45	28	31	16

even number + even number $54+28=82$ (even)	even number + odd number			
(odd)		$	$	odd number + even number
---:				
(odd)		odd number + odd number		
---:				
(even)				

4 Choose numbers from the box to investigate multiplying odd and even numbers. The first one has been done for you.

2	3	4	5	6	7	8	9

Writing 5-digit numbers

1 Draw a line to match each numeral to its correct name.
(a) twenty-three thousand eight hundred and forty-two
(b) seventy-seven thousand two hundred and eighteen
(C) thirty thousand six hundred and ninety-one
(d) thirteen thousand nine hundred and six
(e) forty-one thousand five hundred and two

2 Write the numbers named in these sentences in numerals.
a Jinny had twenty-six thousand four hundred and fifty-two hits on her website.

26452
b Greg bought a car for thirty-two thousand three hundred and fifty dollars.

32350
c Adam flew seventeen thousand and nineteen kilometres to London.

3 Place each number in its box along the number line.

$\begin{array}{llllllll}8086 & 21300 & 5032 & 38201 & 18880 & 29422 & 36781 & 30033\end{array}$

4 Write three numbers that are between the numbers on these number lines.

Research Use the internet to find out the prices of different cars. Write down the prices in numerals and words.

Place value

1 Write the numbers in expanded notation.
The first one has been done for you.
a $65329=60000+5000+300+20+9$

(b) $54678=\frac{50000+4000+600+70+8}{\text { (c) } 11750=\frac{10000+1000+700+50}{}}$| d $80325=80000+300+20+5$ |
| :--- |

2 Write the expanded notation as a 5-digit number.
a $40000+5000+700+20+1=$ \qquad
b) $50000+4000+900+30+6=$ \qquad
c $90000+7000+300+10=$ \qquad
d. $60000+9000+20+4$ \qquad
3 Colour the larger number in each pair.

a | $40000+800+2$ | $40000+90+7$ |
| :---: | :---: |

b | $10000+10+1$ | $10000+100$ |
| :---: | :---: |

4 This calculator shows the number 78534. What would you add to make:

(a)
the 4 into $a 9$? \qquad 5
(b) the 8 into o 9? \qquad 1000
the 5 into a 7 ? \qquad
d the 3 into an 8 ? \qquad

5 Fill in the missing digits of these numbers, which are in order.

64267	64268	$642 \underline{6} 9$

18999	19000	19001

Using 5-digit numbers

1 Look at the distances that athletes need to travel from cities aroud the world to get to London for the 2012 Olympic Games.
a Colour the city closest to London in each pair.

Auckland	Perth
Singapore	Manila
Mexico City	Rio de Janeiro

City	Distance from London (km)
Auckland	18329
Mexico City	8939
Manila	13693
Perth	14481
Rio de Janeiro	9250
Singapore	10863

b Which city has a distance with the following place values?

i 5 tens	Rio de Janeiro	ii 8 hundreds	Singapore
iii 3 thousands	Manila	iv 1 one	Perth

c Write the cities in ascending order according to their distances from London.

Mexico City, Rio de Janeiro, Singapore, Manila, Perth, Auckland

2 Round the cost of each car to the nearest thousand dollars.

	(8)			
\$17200	\$22399	\$57500	\$15990	\$39800
\$ 17000	\$ 22000	\$ 58000	\$ 16000	\$ 40000

3 Can you think of a number that when rounded to the nearest:
a ten thousand becomes 70000?
b thousand becomes 70000? \qquad

c hundred becomes 70000 ? \qquad Answers will vary

Discuss places where you have seen 5 -digit numbers.

Numbers to 999999

1 Write the number represented by the beads on each abacus in the space provided.

493510

385407

703028

2 Draw beads on each empty abacus to represent the numbers.
a

992700
b

603813

81404

3 These web page counters show the number of hits each website had in one day.

face Tube coldmail	whybook	Your maps		WEBNET	i-PEDIA
$\mathbf{3 4 5 9 2 0}$	499876	98712	100345	50721	354128

a Read the numbers in Question 3 to a classmate.
b Write down the number of hits Your maps had in words.
\qquad
c What is the place value of the ' 4 ' in the number of hits on:

| i FaceTube? ten thousands ii Coldmail? hundred thousands | | |
| ---: | :--- | :--- | :--- |
| iii Your maps? tens | iv | I-pedia? thousands |

d List the websites in descending order of number of hits.

> Coldmail, I-pedia, FaceTube, Your maps, whybook, webnet

Jump strategy

1. Add 10 to each number.
a 43
53
d. 50 \qquad
(g) 330 \qquad
b 61
\qquad (C) 88 \qquad
(e) 124 \qquad f 265 \qquad
h 411
\qquad
i 589 599

Subtract 10 from each number.
a 26 \qquad
g 450 \qquad
(b) 45 \qquad (c) 77 \qquad
f. 241 \qquad
(e) 163
612
i 310 \qquad

Jump strategy

$$
146+31=146+30+1=176+1=177
$$

This strategy is demonstrated on a number line for both addition and
 subtraction.

$$
175-23=175-20-3=155-3=152
$$

3 Solve each number sentence. Try using the jump strategy. Record your answers on the open number line.

4 Tina wrote her solutions on an open number line using the jump strategy. What number sentences was she asked to solve?

$53+34=$
b

Discuss with a partner how you solved the number sentences.

Open number lines

1 Skip count by 10 to complete each pattern.
a
$23,33,43$ \qquad 53 , \qquad 63 , \qquad , \qquad 83 .93 . .103 b $147,157,167$, \qquad 177 .187. .197 \qquad .217 , 227

2 Calculate the total run score after each batter's innings. Show your working on an open number line. The first one has been done for you.

Batter	Score	Working	Number sentence
1	78	$+60$	
2	63		$78+63=141$
3	42		$141+42=183$
4	19		$183+19=202$
5	62		$202+62=264$
6	83		$264+83=347$
7	55		$347+55=402$
8	47		$402+47=449$
9	17		$449+17=466$
10	38		$466+38=504$
11	3		$504+3=507$
Total score			507

Split strategy

1 How many tens are there in each number? The first one in each row has been done for you.
e $154 \xrightarrow{15}$
(b) 91
9
(C) $77 \quad 7$
d 40 \qquad
f 185 \qquad (g) 238 \qquad h 522 \qquad

Split strategy

This is another way to add numbers easily. $\quad 132+47=$
First split each number into tens and ones.
$130+2+40+7$
Add the tens first and then the ones. $\quad 170+9=179$

2 Split each number into tens and ones. The first one has been done for you.

3 Solve each number sentence. Try the split strategy.

a	$123+14=$	$120+3+10+4=137$
b	$156+21=$	$150+6+20+1=177$
c) $162+35=$	$160+2+30+5=197$	
d.	$158+26=$	$150+8+20+6=184$

Discuss with a partner how you solved the number sentences.

4 Add across and down to find the totals.
What strategies did you use? Write what you did.

Answers will vary

Answars will vary

Addition and subtraction problems

1. Add any two of these numbers in your head: $73 \quad 59 \quad 97 \quad 64$
a \qquad $+$ \qquad $=$ \qquad
How did you work it out? Answers will vary
b Subtract one of the above numbers from 110 .
110 - \qquad $=$ \qquad
How did you work it out? Answers will vary

Solve these problems. Check your answer with a calculator.

			Working out
a	Jon and Sofia went skiing. Jon's skis cost $\$ 125$ to hire and Sofia's cost $\$ 87$. How much did ski hire cost altogether?		\$212
b	On a ski lift at Thredbo, there were 131 skiers. 24 of them were wearing goggles. How many were not wearing goggles?		\$107
c)	The depth of the snow was 218 cm .34 cm of fresh snow fell overnight. What is the depth of snow now?		252 cm
d)	It costs \$191 for a 3-day lift pass. If Ryan got a $\$ 55$ discount, how much did he pay for the pass?		\$136

3 Make up a subtraction problem about mountain bikes with an answer of 96.

Discuss with a partner the strategies you used to solve these problems.

Order of addends

1 Circle pairs of numbers which add up to 10 to make these additions easier. Then do the additions. The first one has been done for you.
a (3) $+5+7$ = 15
b (4) + (6) $+9=19$
(c) $2+(9)+(1)=12$

Circle pairs of numbers which add to 20 to make these additions easier. Then do the additions. The first one has been done for you.
(a) (11) +9$)+7=\underline{27}$
b) (15) $+6+(5)=20$
(c) $4+(8)+(12)=\underline{24}$

3 Write down pairs of numbers, from inside the stors, which add to 100 .

| 71.29 | 55.45 | |
| :---: | :---: | :---: | :---: |
| | 94.67 | 90.10 |

4 Circle pairs of numbers which add to 100 to make these additions easier. Then do the additions. The first one has been done for you.

This strategy involves changing the order of the addends (see p. 15) to find multiples of ten.

a $\left(10+55+90=\frac{155}{}\right.$	b (6) $+17+(94)=\frac{117}{181}$
c $81+(71)+(29)=\underline{131}$	

5 Each sticky label is numbered.

Which 2 have a sum of 100?	63	37	What is the total of all numbers from I to 99?
Which 2 have a difference of 100?	121	21	
Which 2 have a sum close to 20?	17	4	
Which 2 have a sum close to 200?	121	80	
Use a calculator to find the total ofall the numbers on the sticky labels.			
		558	Think of an easy way to add them.

Number links

1 Calculate the answer to each addition question using a mental strategy.
a $18+16+2=36$
(b) $20+30+80=130$
c $13+26+7=$ \qquad
d $2+17+43=\underline{62}$
e $46+55=101$
(f) $109+19=\underline{128}$

Explain how you worked out the answer to Question lc.
Answers will vary

2 Calculate the answer to each subtraction question using a mental strategy.
(a) $18-8=10$
(b) $35-21=14$
(C) $50-19=31$
d) $20-7-3=\underline{10}$
e $99-33=\underline{66}$
(f) $106-11=\underline{95}$

Explain how you worked out the answer to Question 2f.
Answers will vary

3 Look at the grid. Link 2 numbers horizontally or vertically.

65	14	87
76	55	13
22	18	93

Discuss your strategies with a partner. Did you use the same strategies or different ones?
a Write down four links which total more than 100.
The first one has been done for you. \qquad
$93+18.65+76$
b Write down four links which total less than 100.

$$
18+55,22+76,22+18,14+55
$$

C Write down one link that totals 100 . \qquad $87+13$
d What is the smallest total you can find? \qquad 40
e What is the largest total you can find? 141

Compensation strategy

1 Use the compensation strategy to complete the additions. The

The compensation strategy can be used when you are adding.
E.g. $45+\underline{39}=45+\underline{40}$ subtract $\underline{1}=84$ first one has been done for you.
a $\left.54+18=\frac{54+20 \text { subtract } 2=72}{\text { (b) } 27+19=} \begin{array}{cc}27+20 \text { subtract } 1=46 \\ \text { c } 36+29= & 36+30 \text { subtract } 1=65 \\ \text { d } 55+38= & 55+40 \text { subtract } 2=93\end{array}\right)$

The compensation strategy can also be used when you are subtracting.
E.g. $56-\underline{18}=56-\underline{20}$ add $\underline{2}=38$

Use the compensation strategy to complete the subtractions. The first one has been done for you.

a	$46-19$
(b) $57-19$	$=\frac{46-20 \text { add } 1=27}{}$
c $53-29$	$=\frac{57-20 \text { add } 1=38}{}$
(d) $75-38$	$=$
$75-30$ add $1=24$	

3 The following temperature forecasts have been made for different cities around the world.

Athens	Auckland	Cairo	Dubai	New York	Sydney
$38^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$	$42^{\circ} \mathrm{C}$	$47^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$

Calculate the difference in temperature between:
a Dubai and Auckland \qquad
b Athens and New York \qquad
c Cairo and Sydney $24^{\circ} \mathrm{C}$

Pretend the 8 key on your calculator is broken. Write how you could use your calculator to find the answer to this number sentence:
$129+38=$ \qquad $129+40$ subtract $2=167$

Con you think of any other ways? Answers will vary

roblem solving

1 Solve these addition and subtraction problems. Use a calculator to check your solution.

			Working out
a	On an overseas holiday, Ben took 138 photos in Bali and 127 in China. How many photos did he take altogether?		265
b	At the morkets in Bali, Ben counted 186 stone and wood carvings. If 59 of the carvings were stone, how many were wood?		127
c)	In China, Ben walked along the Great Wall. He walked up 216 steps, then took a rest. He climbed another 197 steps. How many steps did he climb altogether?		413
d	The islond of Bali is 153 km wide. Ben's family drove from one side to the other. After driving 97 km , how much further did they have left to drive?		56

2 Write the number problem and answer for each calculation shown on the number line.

	Number line	Problem
b		$165+20+3=188$
		$179-30-7=142$

Jasna saved \$139 in January and \$276 in February. How much more does she need to save in March to buy a digital camera worth $\$ 520$?

Knowing the facts

Bridging the decades is a strategy to solve addition and subtraction.
E.g. $217+14=$? Think, $217+10+3+1=220+10+1$
$=231$
1 Explain how you could use the bridging strategy to solve these additions.

(a) $146+15=$| (146 $+10+4+1=161$ |
| :--- |
| (b) $208+26=$ |
| $208+20+4+2=234$ |

2 Try doing these in your head.
(a) $109+12=$ \qquad b $158+15=$ \qquad c $237+24=$ \qquad

Using patterns is another strategy to solve addition and subtraction problems.
E.g. $3+4=7$, so 3 tens +4 tens $=7$ tens and 3 hundreds +4 hundreds $=7$ hundreds

$$
30+40=70 \text { and } 300+400=700
$$

3 Find the patterns.

$5+3=8$	$50+30=80$	$500+300=800$
$8-1=7$	$80-10=70$	$800-100=700$
$6+7=13$	$60+70=130$	$600+700=1300$
$15-2=13$	$150-20=130$	$1500-200=1300$
$11+8=19$	$110+80=190$	$1100+800=1900$

4 Solve these problems mentally.

Problem	Solution	
aGreta has $\$ 50$ and Ana has $\$ 70$. How much do they have altogether?	$\$ 120$	
	Fiona has l bag of 140 beads and another of 80 beads. How many beads does she have altogether?	220
c	Arin weighed 110 kg. He lost 30 kg. How heavy is he now?	80 kg
d	Jinu took 500 photos on his digital camera but deleted 300 of them. How many photos are left?	200

Can I give \$1 10 to Karen, $\$ 130$ to Pete and $\$ 160$ to Emily, if I have $\$ 395$? Explain your answer.

Estimation with addition

An addend is a number that is added to another number.

Numbers that end in 4 or less round down to the nearest ten. Numbers that end in 5 or more round up.

1. Estimate the answer by rounding each addend to the nearest ten, then calculate the answer. The first one has been done for you.

	Addition problem	Estimate	Answer
a	$52+19=$	$50+20=70$	71
b	$28+31=$	$30+30=60$	59
c	$98+55=$	$100+60=160$	153

Estimate the answer by rounding each addend to the nearest hundred, then calculate the answer. The first one has

Numbers that end in 49 or less round down to the nearest hundred. Numbers that end in 50 or more round up. been done for you.

	Addition problem	Estimate	Answer
a	$121+193=$	$100+200=300$	314
b	$228+311=$	$200+300=500$	539
c	$407+182=$	$400+200=600$	589
d	$555+278=$	$600+300=900$	833

3 Estimate first, then calculate the answer.

Problem	Picture	Estimate	Answer
In the piggy boank there are 114 gold coins and 183 silver coins. How many coins altogether?		300	297
Andrew swam 287 laps last week and 320 this week. How many laps did he swim altogether?		600	607
Write a problem and draw a picture for the answer shown. Answers will vary		200	176

Mental strategies

1. Circle the addition pairs with answers greater than 100 .

$12+80$	$67+48$	$38+79$	$82+20$
$45+45$	$90+7$	$39+69$	22+80

2 Circle the addition pairs with answers greater than 1000 .

$300+500$	$900+150$	$780+135$	$550+528$
$772+119$	$347+723$	$407+467$	$899+100$

3 a Add any 2 of these numbers in your head.

| 349 | 251 |
| :--- | :--- | :--- | :--- | :--- |

How did you work it out? Answers will vary
b Subtract 1 of the above numbers from 400. 400 - \qquad $=$ \qquad
How did you work it out? Answers will vary

4 Look at each person's mp3 player below to see how many songs they have.

a How many songs do Erica and Tom have altogether? 798
b Calculate the difference between
the number of songs Bei and Jake have.
c Which 2 children have exactly 1000 songs between them? \qquad Jinu \qquad
d Use a calculator to calculate the total number of songs that the 5 children have. \qquad
Number and Place Value

Delivering goods

(20) (2) (4) (0) (0) (20

a What do these signs tell us? \qquad speed limit
b Mentally calculate the total of all the numbers on these signs. 270

C Explain how you worked it out. Answers will vary
d. Con you do it another way? Answers will vary

These trucks have travelled great distances to deliver their goods.

1125 km	998 km	1257 km	632 km	864 km	530 km

2 Which coloured truck travelled:
a the greatest distance? _white b the least distance? black
3 What is the total distance travelled by:
(a) the green truck and the blue truck? 1630
b the yellow truck and the black truck? 1655

4 What is the difference in distance travelled by:
a the blue truck and the red truck? \qquad 134
b the white truck and the yellow truck?
5 Which 2 trucks together travelled:

2382 km ?	yellow	white
1162 km ?	green	black

What is the maximum legal speed limit for semi-trailers in the different states/territories of Australia?

the algorithm

1 Complete these addition algorithms.
The first one has been done for you.

(a) | \mathbf{H} | \mathbf{T} | \mathbf{O} |
| :---: | :---: | :---: |
| 7 | 4 | 3 |
| | $\mathbf{1}$ | 5 |
| 8 | 9 | 5 |

b | \mathbf{H} | \mathbf{T} | \mathbf{O} |
| :---: | :---: | :---: |
| 3 | 4 | 5 |
| 3 | 2 | 1 |
| 6 | 6 | 6 |

An algorithm is a method used to calculate an answer. When using an algorithm to add and subtract, make sure that the numbers are placed in the correct columns according to their place value.

(C) | \mathbf{H} | \mathbf{T} | \mathbf{O} |
| :---: | :---: | :---: |
| 7 | 2 | 1 |
| $\mathbf{1}$ | 7 | 7 |
| 8 | 9 | 8 |

(d) | \mathbf{H} | \mathbf{T} | \mathbf{O} |
| :---: | :---: | :---: |
| 5 | 3 | 8 |
| 2 | 3 | 1 |
| 7 | 6 | 9 |

(e) | \mathbf{H} | \mathbf{T} | \mathbf{O} |
| :---: | :---: | :---: |
| 5 | 0 | 9 |
| 2 | 8 | 0 |
| 7 | 8 | 9 |

2 a Complete these subtraction algorithms.
The first one has been done for you.

i	H	T	\bigcirc	ii	H	T	0
	7	8	9		5	4	7
-	1	6	2	-	1	2	5
	6	2	7		4	2	2
iv	H	T	0	v	H	T	0
	7	5	9		3	4	8
-	3	3	9	-	3	2	5
	4	2	0			2	3

b Check your answers in part a by completing the inverse operation of addition.

| \mathbf{H} | \mathbf{T} | \mathbf{O} |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ | 2 | 7 |
| 1 | 6 | 2 |
| 7 | 8 | 9 |

ii | | H | T |
| :---: | :---: | :---: |
| | O | |
| 4 | 2 | 2 |
| 1 | 2 | 5 |
| 5 | 4 | 7 |

iii | H | T | O |
| :---: | :---: | :---: |
| 3 | 0 | 1 |
| 3 | 0 | 1 |
| 6 | 0 | 2 |

3 Look at the table and write the number of crimes solved by:
a Banks and Sprigs \qquad
673
b Gleeson and Lawson \qquad 368

Agent	Number of crimes solved
Banks	631
Gleeson	53
Lawson	315
Sprigs	42

Irading in addition

Think and say!

8 ones plus 4 ones equals 12 ones. Trade 10 ones for 1 ten. Record 2 in the ones column and I in the tens column. 2 tens plus 3 tens plus I ten equals 6 tens.

Th	\mathbf{H}	\mathbf{T}	\mathbf{O}
${ }^{\prime} 4$	9	${ }^{\prime} 2$	8
2	5	3	4
7	4	6	2

Record 6 in the tens column.
9 hundreds plus 5 hundreds equals 14 hundreds. Trade 10 hundreds for 1 thousand.
Record 4 in the hundreds column and I thousand in the thousands column.
4 thousand plus 2 thousand plus I thousand equals 7 thousands.
Record 7 in the thousands column.
Answer is 7462.

Solve these algorithms. The first one has been done for you.

a	Th	H	T	0	b	Th	H	T	0	C	Th	H	T	0
+	3	6	7	1	+	3	4	9	0	+	4	5	5	2
	1	2	8	4		2	8	0	6		3	7	2	9
	4	9	5	5		6	2	9	6		8	2	8	1
4 6 5 3 3 5 7 8 2 4 0 8										$+$	2		0	8
+		8	7	2		2	3	6	7		1	2	9	5
	5	5	2	5		5	9	4	5		3	7	0	1

2 Deepak plays his electronic game every night. He kept a record of his highest score each night.

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
392	1685	1776	3452	4076	4623	4918

a Calculate Deepak's total score for Thursday and Friday night.

b Calculate Deepak's total score for the weekend.
c Calculate Deepak's total for the week.

20922
d Why do you think Deepak's scores went higher as the week went on? \qquad
improves scores
by practising

Number and Place Value

Trading in subtraction

Think and say!

6 ones take away 9 ones cannot be done.
Trade I ten from the tens column for 10 ones (5 tens becomes 4 tens).
Move the 10 ones to the ones column to make 16 ones.
16 ones take away 9 ones is 7 ones.
4 tens take away I ten is 3 tens.
8 hundreds take away 2 hundreds is 6 hundreds.
4 thousands take away I thousand is 3 thousands.
Answer is 3637.

$-$| $\mathbf{T h}$ | \mathbf{H} | \mathbf{T} | \mathbf{O} |
| :---: | :---: | :---: | :---: |
| 4 | 8 | ${ }^{4}$ D. | ${ }^{1} 6$ |
| 1 | 2 | 1 | 9 |
| 3 | 6 | 3 | 7 |

1 Solve these algorithms. The first one has been done for you.

a	Th	H	T	0	b	Th	H	T	0	C	Th	H	T	0
-	5	${ }^{5} \varnothing$	'2	9	-	3	4	7	5	-	2	6	7	7
	1	2	5	7		1	2	4	9		1	2	9	3
	4	3	7	2		2	2	2	6		1	3	8	4

(d) \begin{tabular}{|l|l|l|l|}
\hline 6 \& 3 \& 9 \& 0

\hline \& 2 \& 4 \& 7

\hline 6 \& 1 \& 4 \& 3

\hline

$-$

\hline 5 \& 9 \& 8 \& 3

\hline 1 \& 5 \& 2 \& 8

\hline 4 \& 4 \& 5 \& 5

\hline

$-$

\hline 7 \& 8 \& 2 \& 2

\hline 1 \& 7 \& 4 \& 0

\hline 6 \& 0 \& 8 \& 2

\hline
\end{tabular}

2 The table shows the population of townships in New South Wales.

Township (NSW)	Bourke	Cooma	Hat Head	Huskisson	Wee Waa	Yass
Population	2840	7150	297	1612	2306	9675

Calculate the population difference between:
a Cooma and Bourke
b Yass and Wee Waa
c Huskisson and Hat Head

4310
7369
1315

Which 2 townships have a combined population of 9456 ?
Cooma
Wee Waa
4 Todd completed this subtraction. Explain where he went wrong.
He incorrectly subtracted the 7

from the 9 \quad| 8 | 7 | 6 | 2 |
| ---: | ---: | ---: | ---: |
| -3 | 9 | 3 | 0 |
| 5 | 2 | 3 | 2 |

Addition and subtraction of larger numbers

1 Find the sum of the following number sentences using a mental strategy.
a
$540+230=$
770
b. $250+670=$ \qquad
c $1090+2400=3490$
d. $1230+2700=$ \qquad
e $5500+1500=7000$ (f) $3500+1510=$ \qquad

2 Solve these olgorithms.
a

$\begin{array}{lllll}3 & 1 & 2 & 3 & 8\end{array}$						
+	2	4	9	6		
	5	6	1	9		

b

C

e

$$
\begin{array}{r}
46482 \\
-\quad 3981 \\
\hline 42501 \\
\hline
\end{array}
$$

f

53750
$-\quad 16834$
36916

3 The following table shows the number of bottles of water sold in each month of the year.

Jan	Feb	Mar	Apr	May	June
42309	44002	32307	30218	20767	15427

July	Aug	Sept	Oct	Nov	Dec
11403	7879	13872	19623	27654	36401

a Calculate the total number of bottles of water sold in February and March.
b

How many bottles of water were sold altogether in spring?

$$
61149
$$

In 11523 , the 5 digits add to 12 . List other 5-digit numbers that add to 12 .

5-digit problem solving

1 This table shows the amount of petrol (L) delivered to each service station by a tanker.

Gas Alley	Autofuel	Payless	Moto	EasyFuel	Biopump
25196	27481	25518	33491	30016	28122

Use a calculator to answer the following questions.
a What is the total amount of petrol delivered to Moto and Biopump?
\qquad
b What is the difference between the amount of petrol delivered to EasyFuel and Payless?
\qquad
C Which two service stations have had a combined total of 50714 L of petrol delivered? \qquad Payless
2 Solve the following problems. Check your answers with a calculator.

		Problem	Working/solution
a		Dom bought a car for \$28890 and a caravan for \$18599. What was the total cost of his purchase?	\$47489
b		Jess's holiday cost \$42 280 and Peta's cost \$17925. How much more did Jess pay than Peta for her holiday?	\$24355
C	-acor	Kath flew from Sydney to Hong Kong (7371 km) and then from Hong Kong to New York (13033 km) to do some shopping. How for did Kath travel altogether?	20404 km
d		At a recent netball match, the official attendance was 26 400. If the arena holds 50000 spectators, how many more could have been admitted?	23600

Multiplying by a multiple of ten

1 Choose 4 numbers between 0 and 9 and complete each multiplication square. Choose different sets of numbers each time. The first one has been done for you.

Answers will vary

2 Mr Reddy asked his class to solve the multiplication 3×20. Some of the solutions are shown on the right. Match the student to the strategy.

Kira

$$
\begin{aligned}
3 \times 20 & =20+20+20 \\
& =60
\end{aligned}
$$

Connor

a place value concepts \qquad
b repeated addition \qquad
c factors Tam

Which strategy do you prefer to use?

3 Mr Reddy set up a cake stall to raise some money to buy games for his class.

Muffin 40 cents

Cupcake 70 cents

Biscuit 50 cents

Use mental strategies to calculate the total cost (in cents) of the items in the table.

Items	Cost	How did you work it out?	
a	3 muffins	$\$ 1.20$	Answers will vary
b	6 doughnuts	$\$ 1.80$	
c)	8 cupcakes	$\$ 5.60$	
(5 biscuits	$\$ 2.50$	

Multiplication strategies

1 Draw a line to match the equivalent cards.

2 Mrs Thompson asked her class to solve the multiplication $9 \times 13=$ Here are some of the solutions.

Stuart

$9 \times 13=(9 \times 10)+(9 \times 3)$

$$
=90+27
$$

$$
=117
$$

Chris

9×13, 1 know $10 \times 13=130$
$\begin{aligned} \text { So, } 9 \times 13 & =130-13 \\ & =117\end{aligned}$

Tilly

$$
\begin{aligned}
1 \text { know that } 3 \times 13 & =39 \\
\text { So, } 9 \times 13 & =3 \times 39 \\
& =117
\end{aligned}
$$

Show another way to work it out. Answers will vary

3 Use mental strategies to solve these multiplications.

$4 \times 14=$	56
(b) $5 \times 16=$	80
(c) $8 \times 15=$	120
d 3×24	72
e $7 \times 31=$	217

4 Different balls have different masses.

$$
\text { Golf ball } 56 \mathrm{~g} \quad \text { Squash boall } 24 \mathrm{~g} \quad \text { Tennis boall } 61 \mathrm{~g}
$$

Use mental strategies to calculate the total mass of the items in the table.

	Items	Total mass	How did you work it out?
a	3 golf balls	168 g	Answers will vary
b	9 squash balls	216 g	
c	4 tennis balls	244 g	

2-digit multiplication

1 Complete these number sentences.
(a) $4 \times 6=\underline{24}$
b $7 \times 1=7$
(C) $3 \times 3=9$
d. $2 \times 10=\underline{20}$
(e) $8 \times 2=16$
(f) $6 \times 5=$ 30
(9) $9 \times 3=\underline{27}$
(h) $10 \times 4=\underline{40}$
(i) $5 \times 2=10$
(j) $2 \times 3=6$
(k) $4 \times 3=12$
(1) $5 \times-10=50$

2 Look at the picture of the cake on the right and answer the questions below.
a How many slices are in the cake? \qquad 8
b Mentally calculate the number of slices in 6 cakes. \qquad

c Mentally calculate the number of slices in 18 cakes. \qquad 144
d Explain how you worked mentally to solve Question 2c.

> Answers will vary
e If each slice is sold for $\$ 2$, how much money would the boker make if he sold 18 cokes? \qquad $\$ 288$
f The baker needs to make 336 slices. Use a calculator to work out how many cakes this is. \qquad 42 cakes

3 Each egg has a mass of 56 g . Mentally calculate the mass of each set of eggs.

How could you use your answer from Question 3a to help you solve Question 3c?

Building multiplication facts

1. Fill in the table with multiplication facts.

\times	$\mathbf{9}$	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{4}$
$\mathbf{2}$	18	4	16	2	8
$\mathbf{7}$	63	14	56	7	28

2 Tim likes building, so he tried it with numbers. This is what he came up with.

Tim's multiplication facts

$$
\begin{aligned}
3 \times 2 & =6 \\
6 \times 2 & =12 \\
12 \times 2 & =24 \\
24 \times 2 & =48
\end{aligned}
$$

Tim's division facts

$$
\begin{aligned}
6 \div 3 & =2 \\
12 \div 3 & =4 \\
24 \div 3 & =8 \\
48 \div 3 & =16
\end{aligned}
$$

a Explain the strategy Tim used to build the multiplication facts.

> Answers will vary
b Explain the strategy Tim used to build the division facts.
Answers will vary
c What is 48×2 ?
96
(d) What is $96 \div 3$?
32

3 Build multiplication facts to work out the costs in the table.

Garlic bread $\$ 3$	Pasta $\$ 7$	Pizza $\$ 9$
2 breads $2 \times 3=6$	3 pastas $3 \times 7=21$	5 pizzas $5 \times 9=45$
4 breads $4 \times 3=12$	6 pastas $6 \times 7=42$	10 pizzas $10 \times 9=90$
8 breads $8 \times 3=24$	12 pastas $12 \times 7=84$	20 pizzas $20 \times 9=180$
16 breads $16 \times 3=48$	24 pastas $24 \times 7=168$	40 pizzas $40 \times 9=360$

4 Gelato costs $\$ 5$ for 3 scoops.
a How much will 9 scoops cost? \qquad
b How much will 27 scoops cost? \qquad

Egyptian multiplication

1 Draw lines to match the equivalent cords.

Ancient Egyptians had a different number system and did calculations in a different way. They used doubling to solve multiplication problems.

$$
\begin{aligned}
& 1 \times 13=13 \\
& 2 \times 13=26 \\
& 4 \times 13=52 \\
& 8 \times 13=104
\end{aligned}
$$

To calculate 5×13 :
$1+4=5$,
so they added the answers to

$$
\begin{array}{ccccc}
1 \times 13 & \text { and } & 4 \times 13 & \text { to find } & 5 \times 13 . \\
13 & + & 52 & = & 65
\end{array}
$$

To calculate II $\times 13$:
$1+2+8=11$,
so they added the answers to 1×13 and 2×13 and 8×13 to find 11×13. $13+26+104=143$

2 Use the Egyption method to solve these multiplications.
a 3×18

$$
\begin{gathered}
1 \times 18 \text { and } 2 \times 18 \text { to find } 3 \times 18 \\
18+36=54
\end{gathered}
$$

b 5×18

$$
\begin{gathered}
1 \times 18 \text { and } 4 \times 18 \text { to find } 5 \times 18 \\
18+72=90
\end{gathered}
$$

c 15×18

$$
\begin{gathered}
1 \times 18 \text { and } 2 \times 18 \text { and } 4 \times 18 \text { and } 8 \times 18 \text { to find } 15 \times 18 \\
18+36+12+144=
\end{gathered}
$$

Make up your own 2-digit multiplications
and give to a friend to solve.

Division strategies

1 Write the related multiplication (\times) and division (\div) facts for each triangle. The first one has been done for you.

$3 \times 6=18$	$2 \times 5=10$	$4 \times 7=28$	$5 \times 9=45$	$8 \times 10=80$
$6 \times 3=18$	$5 \times 2=10$	$7 \times 4=28$	$9 \times 5=45$	$10 \times 8=80$
$18 \div 6=3$	$10 \div 5=2$	$28 \div 4=7$	$45 \div 9=5$	$80 \div 8=10$
$18 \div 3=6$	$10 \div 2=5$	$28 \div 7=4$	$45 \div 5=9$	$80 \div 10=8$

2 Work out the cost for one of each item.

a	b	c	d
Sushi 4 for $\$ 8$	Strawberries 5 for 50 c	Ice-creams 3 for $\$ 18$	Biscuits 6 for 54 c
1 sushi costs $\$ 2$	1 strawberry costs 10 C	1 cone costs $\$ 6$	1 biscuit costs 9 C

3 Look for a pattern to solve these divisions. The first one has been done for you.
(a) $12 \div 4=3$ so $120 \div 4=$ \qquad
(b) $20 \div 5=4$ so $200 \div 5=$ \qquad
c) $28 \div 4=7$ so $280 \div 4=$ \qquad
d $15 \div 3=$ \qquad so $150 \div 3=$ \qquad
e Gulzar had \$320 and shared it equally between his 4 children. How much did each child get? \qquad $\$ 80$
f Kasey swam 490 laps in one week. If she swam the same number of laps each day, how many laps did she swim in one day? Use a calculator to find how many times:
a 13 can be subtracted from 104? \qquad So, $104 \div 13=$ \qquad
b 18 can be subtracted from 126? \qquad So, $126 \div 18=$ \qquad 7

Division problems

1 Write the answers to these division statements.
a $32 \div 4=$ \qquad
c) $18 \div 3=$ \qquad
b) $24 \div 4=$ \qquad
d. $30 \div 3=$ \qquad
(f) $35 \div 5=$ \qquad
(e) $8 \div 1=$ \qquad
h. $27 \div 3=$ \qquad
g $15 \div 5=$
(j) $42 \div 7=$ \qquad

2 Work out the answer and record the strategy you used for these division problems.

	Problem	Working out/strategy
a	Share 16 masks among 4 children.	$16 \div 4=4$
c	Share 21 flowers among 3 vases.	$21 \div 3=7$
d	Share 30 shells among 5 buckets.	$30 \div 5=6$

3 Write your own division problem which has an answer of:
a 4 Answers will vary
\qquad
b 7 Answers will vary

4 This cup contains 24 Easter eggs. Show 6 ways that these eggs could be shored.
$24 \div \frac{3}{8}=-\frac{8}{3}$
$24 \div \frac{8}{4}=\frac{6}{4}=$
$24 \div \frac{3}{4}$
\qquad

Linking division and multiplication

1 If you start from 0 and count by fours, which of these numbers are counted? Circle these numbers.

2 Tick whether or not there will be a remainder. The first one has been done for you.
(12)

17
22
(24)
(28)

34
38
40
If the number you are dividing is not a multiple of the number you are dividing by, then there will be a remainder.

Multiplication can be used to solve division. E.g. $26 \div 6$
Think, $4 \times 6=24$ and 2 more makes 26. So, $26 \div 6=4 \mathrm{r} 2$.
3 Solve these divisions, then check your answer using multiplication. The first one has been done for you.

a	$11 \div 3=$	$3 \times 3=9$
b	$18 \div 4=$	$\begin{aligned} 4 \times 4= & 16 \\ & 16+2=18 \end{aligned}$
c	$28 \div 5=$	$\begin{aligned} 5 \times 5= & 25 \\ & 25+3=28 \end{aligned}$
d	$41 \div 6=$	$\begin{aligned} 6 \times 6= & 36 \\ & 36+5=41 \end{aligned}$

4 At Wonderworld Theme Park, the Runaway Train can hold 6 children.
a How many trains would be needed for 29 children? \qquad 5 Explain your answer. \qquad 4 trains will only carry 24 children an additional train is required
b Estimate how many trains would be needed for 595 children. \qquad 100 Check your answer on a calculator.
99.17 \qquad Was your estimate reasonable? \qquad $y_{\text {es }}$

Multiplication costs

1 In each of these number facts the signs (\times, \div or $=$) have been stolen. Get them back and put them in their proper places. The first one has been done for you.

12	\div	3	$=$	4	3	\times	5	$=$	15	3	\times	11	$=$	33	
9	\times	8	$=$	72	42	\div	6	$=$	7	25	\div	5	$=$	5	
3	\times	10	$=$	30	32	\div	2	$=$	16	7	\times	7	$=$	49	

2 Use a mental strategy to calculate the cost of the phone calls, using the rates in the table.

Use a mental strategy to calculate the cost of the phone calls, using the rates in the table.		Country	
3-minute call to Ireland	514	Afghanistan	56 c
6-minute call to Vietnam	\$2.16	Fiji	41 c
4-minute call to India	\$2.28	India	57c
		Ireland	17 c
7-minute call to Kenya	85.18	Kenya	74 c
I	coll	New Zealand	13 c
to Fiji or a 7-minute call to	tnam?	Vietnam	36 c

> Fiji: $6 \times 41 \Phi=\$ 2.46 \rightarrow$ Cheaper to make a call to fiji
> Vietnam: $7 \times 36 \Phi=\$ 2.52$

3 Use a calculator and repeated subtraction to calculate how many minutes you can call Afghanistan for $\$ 6.72$. (Remember \$6.72 = 672c).

4 In 2008, Australia Post charged customers the following rates for post to Indonesia. Use a calculator to find the total cost of sending three 40 g parcels, five 100 g parcels and six 400 g parcels to Indonesia.

Size of letter	Cost
Up to 50 g	$\$ 1.35$
Over 50 g up to 125 g	$\$ 2.70$
Over 125 g up to 250 g	$\$ 3.95$
Over 250 g up to 500 g	$\$ 7.95$

$\$ 65.25$

Multiplication and division problems

1 Look at each problem in the table. Is it multiplication or division? Work out the answer and record the strategy you used. The first one has been done for you.

		Problem	Working out/ strategy
a		At Outback Jail there are 7 prisoners in each cell. If there are 140 prisoners, how many cells are there?	I know that, $\begin{aligned} 14 \div 7 & =2 \\ \text { so, } 140 \div 7 & =20 \end{aligned}$
b		The police force caught 14 speeding drivers every hour for 6 hours. How many drivers were caught speeding altogether?	84
c		80 cars were stolen from a car park last week and all their wheels were sold. How many wheels were sold in total?	320
d		Detective Donald found 8 bags containing stolen goods. Inside each bog he found 27 mobile phones. How many mobile phones were stolen?	216
e		4 detectives collected a total of 96 pieces of evidence at a crime scene. How many pieces did each detective collect if they all collected the same amount?	24

2 Write and then solve a word problem for each number sentence.
(a) $22 \times 4=$ \qquad
\qquad
b $31 \times 7=\square 217$
\qquad
(C) $42 \div 6=\square 7$

Factors

A factor is a whole number that divides another number evenly, leaving no remainder.
e.g. $6 \div 3=2$

3 is a factor of 6 . Other factors of 6 are 1,2 and 6 .

Complete this multiplication grid.

\times	$\mathbf{9}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{1 0}$
$\mathbf{2}$	18	8	6	14	12	20
$\mathbf{5}$	45	20	15	35	30	50
$\mathbf{8}$	72	32	24	56	48	80

2 Use the arrays to help find all the forctors.

1, 2, 3, 4, 6, 12

\qquad

3 Circle the jewels which are factors of the number on each treasure box.

4 a Write down all the factors of 20 . \qquad 1, 2, 4, 5, 10, 20
b) Write down oll the factors of 40 . \qquad
c What do you notice about the factors of 20 and 40 ?
They overlap

Factors and products

1. Complete these fortor tables.

The product is the result when 2 or more numbers are multiplied.

Factor	2	5	8	7	9	10
Factor	3	6	3	8	4	6
Product	6	30	24	56	36	60

Product	12	18	27	25	63	80
Factor	6	3	9	5	7	10
Factor	72	54	243	125	441	800

2 List all the factors for these numbers, then write them in ascending order.

Number	Multiplication number sentences	Factors
8	$1 \times 8,2 \times 4$	1,2,4, and 8
15	$1 \times 15,3 \times 5$	1, 3, 5 and 15
21	$1 \times 21.3 \times 7$	1,3,7 and 21
16	$1 \times 16,4 \times 4,8 \times 2$	1,2,4,8 and 16

3 Bruce helped construct a building which has 60 windows on each floor.
(a) List all the factors of $60,1,2,3,4,5,6,10,12,15,20,30,60$
b Write as many multiplication number sentences as you can using the factors of 60 .
$1 \times 60.2 \times 30,3 \times 20.4 \times 15,5 \times 12.6 \times 10$

C Write as many division number sentences as you can using the factors of 60 .

$$
\begin{gathered}
60 \div 1.60 \div 2.60 \div 3.60 \div 4.60 \div 5.60 \div 6.60 \div 10,60 \div 12.60 \div 15 \\
60 \div 20.60 \div 30.60 \div 60
\end{gathered}
$$

d The building is 18 storeys high. How many windows are there in the entire building?

Which number
between I and 100 has the most factors? Hint: It will be an even number. You may use a calculator.

Fun with factors

Mr Bonnor decided to play 'Number Heads' with his class. He stuck a number on each student's forehead and each student had to ask questions to find out what number they had. Tito and Connie asked the following questions. Can you work out what number each of them had? Cross the numbers off the chart to help you.

Tito

Am I an even number? Yes
Am I a factor of 48 ? No Am I a multiple of 10 ? Yes Am I a foctor of 40 ? No Am I lorger thon 40? No

nt: You can cross off the odd numbers.										
Yes	1	2	3	4	5	6	7	8	9	10
	11	12	13	14	15	16	17	18	19	20
Yes	21	22	23	24	25	26	27	28	29	(30)
	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50

Connie

Am I a factor of 24 ? No
Am I a multiple of 5 ? No Am I a factor of 21? Yes Am I a multiple of 3 ? Yes
Do I hove 2 digits? Yes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

2 Choose a number between 1 and 50. Write your own set of clues to eliminate numbers until you have just your number left. Use the number chort to help you.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Equivalent fractions - halves, quarters and eighths

1 a Make equivalent fractions like those in the table below by folding 4 poper strips.

						1 whole	
$\frac{1}{2}$						$\frac{2}{2}$	
	$\frac{1}{4}$		$\frac{2}{4}$		$\frac{3}{4}$		$\frac{4}{4}$
$\frac{1}{8}$	$\frac{2}{8}$	$\frac{3}{8}$	$\frac{4}{8}$	$\frac{5}{8}$	$\frac{6}{8}$	$\frac{7}{8}$	$\frac{8}{8}$

b Put these fractions onto the shirts hanging on the line to show their order.

$$
\frac{1}{4}, \frac{1}{8}, \frac{7}{8}, \frac{1}{2}, \frac{3}{4}
$$

c Which other fractions are equivalent to:
i
$i i i$

$\frac{1}{4}$	$\frac{2}{8}$	
$\frac{1}{2}$	$\frac{2}{4}$	$\frac{4}{8}$

ii
iv
$\frac{6}{8}$
$\frac{4}{4}$

2 Colour the larger in each pair.
a
$\frac{1}{4}$

b
$\frac{1}{2}$
$\frac{3}{8}$

$\frac{4}{8}$	$\frac{1}{4}$	$\frac{2}{2}$	$\frac{7}{8}$

a Order the fractions from smallest to largest. \qquad $\frac{1}{4} \cdot \frac{4}{8} \cdot \frac{7}{8} \cdot \frac{2}{2}$
b Place these 4 fractions on the number line.

4. Look at the table in Question ${ }^{\overline{8}} 1$ to help you name ofraction between:
a $\frac{1}{4}$ and $\frac{1}{2} \frac{3}{8}$
C $\frac{3}{4}$ and 1 $\frac{7}{8}$
b) $\frac{1}{2}$ and $\frac{3}{4} \frac{5}{8}$
d 0 and

Mixed numerals

1 whole and $\frac{1}{2}=1 \frac{1}{2}$. This is called a mixed numeral.
Look at the shaded squares here to the right.
I whole square is shaded and $\frac{1}{2}$ of the other square
is shaded. So, $1 \frac{1}{2}$ squares are shaded.

1 Name each mixed numeral shown by the coloured squares below.
a

\qquad

b

C

$1 \frac{3}{4}$
$2 \frac{1}{2}$

2 Write these fractions onto the stars to show their order.

$$
1, \quad 1 \frac{1}{2}, \quad \frac{1}{2}
$$

3 Write these fractions onto the diamonds to show their position.

$$
\frac{3}{4}, 1 \frac{1}{4}, \frac{2}{4}, 1 \frac{3}{4}, \frac{1}{4}, 1 \frac{2}{4}
$$

Colour the larger numeral in each pair.
a
$\frac{3}{4} 1 \frac{1}{2}$
b
$1 \frac{3}{4} 1$
C
$1 \frac{3}{4}$

4 a Fill in the missing fractions.

b Count by quarters and fill in the grid.

$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	1	$1 \frac{1}{4}$	$1 \frac{1}{2}$	$1 \frac{3}{4}$	2	$2 \frac{1}{4}$	$2 \frac{1}{2}$	$2 \frac{3}{4}$	3	$3 \frac{1}{4}$	$3 \frac{1}{2}$	$3 \frac{3}{4}$	4

Fquivalent fractions -
 fifths, tenths and hundredths

1 Make equivalent fractions like those in the table below by folding 3 paper strips.

1 whole									
	$\frac{1}{5}$		$\frac{2}{5}$		$\frac{3}{5}$		$\frac{4}{5}$		$\frac{5}{5}$
$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$	$\frac{10}{10}$

2 Write these fractions onto the lights to show their order.

$$
\frac{3}{10}, \frac{6}{10}, \frac{1}{10}, \frac{5}{10}, \frac{4}{10}
$$

3 Order the fractions from smallest to largest in each row.

a	$\frac{2}{5}$	$\frac{4}{5}$	$\frac{1}{5}$	$\frac{3}{5}$
b	$\frac{1}{10}$	$\frac{6}{10}$	1	$\frac{3}{10}$
c	$\frac{1}{5}$	$\frac{4}{10}$	$\frac{1}{10}$	$\frac{3}{5}$

4 Colour part of the bottom rectangle to make it equivalent to the top, then write the equivalent fraction. The first one has been done for you.
a

The hundreds square shows that $\frac{40}{100}$ is equivalent to $\frac{4}{10}$. Draw lines between the equivalent fractions to match them in the same way.

$\frac{10}{100}$
$\frac{30}{100}$
$\frac{60}{100}$
$\frac{3}{100}$
:---:
$\frac{1}{10}$
$\frac{6}{10}$

More mixed numerals

1 Write the mixed numeral for each. The first one has been done for you.

2 Put these fractions onto the Chinese lanterns to show their order.

b

$\frac{5}{10}$	$1 \frac{7}{10}$	$\frac{10}{10}$	$\frac{3}{10}$	$\frac{8}{10}$	$1 \frac{4}{10}$

3 Colour the larger fraction in each pair.
a

4 a Fill in the missing fractions.

b Count by tenths and fill in the grid.

$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$	1	$1 \frac{1}{10}$	$1 \frac{2}{10}$	$1 \frac{3}{10}$	$1 \frac{4}{10}$	$1 \frac{5}{10}$	$1 \frac{6}{10}$

thirds and sixths

1 Make equivalent fractions like those in the table below by folding three paper strips.

							l whole
	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$				
$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	$\frac{6}{6}$		

2 Name a fraction equivalent to:
(a) $\frac{2}{6}$
\qquad
b $\frac{2}{3}$
\qquad
(C) 1

3 Colour the larger in each pair.

$\frac{5}{6}$	$\frac{2}{3}$

$\frac{3}{6}$	1

4 Count by thirds and fill in the grid.

$\frac{1}{3}$	$\frac{2}{3}$	1	$1 \frac{1}{3}$	$1 \frac{2}{3}$	2	$2 \frac{1}{3}$	$2 \frac{2}{3}$	3	$3 \frac{1}{3}$	$3 \frac{2}{3}$

5 Does $\frac{3}{6}=\frac{1}{2}$? \qquad Explain how you know. \qquad They are equivalent fractions

6 a Design a flag that is $\frac{1}{3} \mathrm{red}$, $\frac{1}{3}$ green, $\frac{1}{6}$ yellow and $\frac{1}{6}$ blue.
b Design a pizza that is $\frac{1}{2}$ salami, $\frac{1}{6}$ mushroom, $\frac{1}{6}$ cheese and $\frac{1}{6}$ olives.

Converting mixed numerals to improper fractions

An improper fraction is a fraction that has a numerator larger than or equal to its denominator. A proper fraction is a fraction with the numerator smaller than the denominator.

Sort these fractions into these three groups: improper fractions, proper fractions and mixed numerals.

$\frac{3}{4}$	$3 \frac{1}{2}$	$\frac{3}{3}$	$1 \frac{1}{4}$	$4 \frac{2}{3}$	$\frac{5}{4}$	$\frac{7}{2}$	$\frac{5}{6}$	$\frac{7}{10}$

Improper fractions	Proper fractions	Mixed numerals				
	$\frac{5}{4}$	$\frac{3}{3}$	$\frac{7}{2}$	$\frac{3}{4}$	$\frac{5}{6}$	$\frac{7}{10}$
				$3 \frac{1}{2}$	$1 \frac{1}{4}$	$4 \frac{2}{3}$

2 A mixed numeral can be converted into an improper fraction.

$$
1 \frac{1}{4}=\frac{4}{4}+\frac{1}{4}=\frac{5}{4}
$$

Convert these mixed numerals into improper fractions.

\square $1 \frac{4}{5}=$ \qquad $\frac{9}{5}$
$1 \frac{1}{2}=$ \qquad $1 \frac{3}{10}=\square \frac{13}{10}$

d

\square
\square
\qquad

3 Convert these improper fractions into mixed numerals.
a

Decimals－tenths

1 This decimal tower shows the decimol 2．6．
（a）Make decimal towers
for：
i

b）Order these decimals from smallest to largest．
$2.8,4.1,5.3$

C Fill in the place values for each decimal in Question la．

2 Name the decimal on the number line．

a
\qquad
b
1.5

C
1.8
d
2.2
e
f
g
h
2.7

Ones	\cdot	Tenths
2	\cdot	6

The place value of the 2 is ones and the 6 is tenths．日时
日时
日时
$2.8,4.1,5.3$
$\begin{array}{lll}\text { 日月 } & & \\ \text { 明 } & \text { iii } & 2.8\end{array}$

＋

\qquad
 x 吅

Decimals - hundredths

The place value of the 6 is ones, the 3 is tenths and the 9 is hundredths.

Ones	.	Tenths
6	.	3

1. Name each decimal on the number line.

$$
1.63 \quad 1.66 \quad 1.69^{\text {Answers will. 4ary }} \quad 1.76 \quad 1.79
$$

2 Order the prices of the items from cheapest to most expensive.

Slinky \$7.95	Viking hat \$8.50	Beach ball \$6.75
Whistle \$3.20	Finger puppets \$9.95	Funny teeth \$8.35

3 The table shows ten record times for the women's 50 m freestyle.

Order	Name	Time (secs)
8	Anne	25.64
7	Dara	25.61
3	Inge	24.13
9	Jill	25.79
4	Jingyi	24.51
10	Kelly	26.53
1	Libby	23.97
2	Marleen	24.09
6	Tamara	25.28
5	Wenyi	24.79

The faster the time, the smaller the number is.
a Order the times from fastest (1) to slowest (10) on the table.
b Which swimmer has the:
i fostest time? \qquad
ii slowest time?
C i Jill has a slower faster time than Inge.

ii Dara has a slower | faster |
| :--- | :--- | time than Marleen.

iii Jingyi has a | slower | faster |
| :--- | :--- | time than Wenyi.

d What is the difference between the fastest and slowest times? \qquad 2.56 seconds
e By how much did Libby beat the time of 24.00 secs? 0.03 seconds

Fractions and Decimals

Rounding decimals

Rounding tenths to the nearest whole number

If the tenths place is 4 or less do not change the whole number.
If the tenths place is 5 or more round up (add I to the whole number).
1 Place these decimals on the number line: $0.6,1.2,2.3,2.9,3.5,3.9$.

2 Write the decimals to the nearest whole number.
a 0.6
b 1.2
(c) 2.3
d 2.9
(e) 3.5
(f) 3.9

2
\qquad
\qquad 4

3 Round each minimum and maximum temperature to the nearest whole degree. The first one has been done for you.

	Adelaide	Brisbane	Darwin	Hobart	Melbourne	Perth	Sydney
Minimum temperature	$12.6^{\circ} \mathrm{C}$	$18.2^{\circ} \mathrm{C}$	$19.9^{\circ} \mathrm{C}$	$3.8^{\circ} \mathrm{C}$	$8.3^{\circ} \mathrm{C}$	$12.7^{\circ} \mathrm{C}$	$9.2^{\circ} \mathrm{C}$
Rounding	$13^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$4^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{C}$	$13^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{C}$
Maximum temperature	$22.7^{\circ} \mathrm{C}$	$28.8^{\circ} \mathrm{C}$	$32.1^{\circ} \mathrm{C}$	$15.0^{\circ} \mathrm{C}$	$20.2^{\circ} \mathrm{C}$	$25.6^{\circ} \mathrm{C}$	$21.7^{\circ} \mathrm{C}$
Rounding	$233^{\circ} \mathrm{C}$	$29^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$	$22^{\circ} \mathrm{C}$

4 Round these numbers to the nearest whole number.
(a) $2.34 \quad 2$
d $9.56 \xrightarrow{10}$
(b) 4.81

5
12

C
7.73 \qquad
f $20.09 \quad 20$
e $12.17 \quad 12$

5 Round each item on the menu to the nearest dollor.

\$12.70	\$8.25	\$6.95	\$11.50	\$15.45
\$ 13	\$ 8	\$ 7	\$ 12	\$ 15

Write five amounts that rounded to the nearest dollar would be $\$ 10$.

Fractions and Decimals

Multiplying and dividing decimals

1 a Use a calculator to multiply each decimal by 10 and 100.

	1.34	7.83	12.52	16.33	32.76	49.08
$\times 10$	13.4	78.3	125.2	163.3	327.6	490.8
$\times 100$	134	783	1252	1633	3276	4908

b) Describe your findings. The decimal point moves right

2 a Use a calculator to divide each decimal by 10 and 100.

	2.81	7.93	15.52	22.18	41.06	50.28
$\div 10$	0.281	0.793	1.552	2.218	4.106	5.028
$\div 100$	0.0281	0.0793	0.1552	0.2218	0.4106	0.5028

b Describe your findings. \qquad The decimal point moves left

3 How many 10 cent pieces make up these amounts?

a $80 c$	8	b $130 c$	13
c $\$ 7.50$	d $\$ 12.30$	123	

4 How many $\$ 100$ notes make up these amounts?

a $\$ 500$	5	b $\$ 900$	9
c $\$ 4400$	d $\$ 8100$	81	

5 Write down the total amount pocket money pictured in each of the questions below. Multiply the amount by 10. Continue doing this to make a pattern. The first one has been done for you.

Pocket money	Total amount	$\times 10$	$\times 10$	$\times 10$
	\$6.55	\$65.50	\$655	\$6550
	\$13.85	\$138.50	\$1385	\$13850
	\$21.50	\$215	\$2150	\$21500

Percentages

The word cent comes from the Latin word centum, meaning one hundred.
Percent means out of one hundred.

1 Shade the following percentages.
a 40%
b 61%

c 83%
d 4%

e 100%

2 Complete the table.

3 Complete the table. Shade the 100 square to match.

100 square	Hundredths	Decimal	Percent
	$\frac{42}{100}$	0.42	42\%
	$\frac{71}{100}$	0.71	71\%
$円$ 	$\frac{9}{100}$	0.09	9\%

Fractions and Decimals

Using percentages

a Convert each mark on the report card into a percentage.

Report Card of Eli Woo		
Subject	Mark	Percentage
Reading	$68 / 100$	68%
Writing	$88 / 100$	88%
Maths	$95 / 100$	95%

b What percentage did Eli score in Reading? \qquad 68%
c How many more marks did Eli need to score 100% in:
i Writing \qquad ii Maths
5

2 Relative humidity is used to describe the amount of water vapour in the air. It is expressed as a percentage.
a What is the relative humidity in these cities?

i Darwin 90% ii Sydney
60\% iii Hobart \qquad
b Which city has the highest relative humidity? \qquad Darwin

Did you know?					
In 2006, 22\% of					
people living in					
Australia were					
born overseas.					Koalas get 90\%
:---					
of the water they					
need from the					
leaves they eat.		25\% of cor accidents			
:---					
are caused by					
drivers using mobile					
phones.		In 1990, only			
:---					
3% of homes in					
Australia had					
smoke alarms.					

a What percentage of car accidents are not caused by drivers using mobile phones?

```
75%
```

b What percentage of homes did not have smoke olarms in 1990? \qquad 97\%
c In 2006, what percentage of people living in Australia were born in Australia? \qquad 78%
d Do koalas get more water from the leaves they eat or the water they drink? \qquad How do you know this? Only 10\% comes from the water they drink Fractions and Decimals

Common fractions and percentages

1 Colour each picture, decimal, fraction and percentage the same colour as the matching picture. The first one has been done for you.

Picture	Decimal	Common fraction	Hundredths	Percentage
	0.10	$\frac{1}{4}$	$\frac{50}{100}$	10\%
	0.5	$\frac{1}{10}$	$\frac{10}{100}$	25\%
	0.25	$\frac{1}{2}$	$\frac{25}{100}$	50\%

2 Order these values from smallest to largest.
(a) $\frac{1}{2}, 10 \%, 0.25$
$10 \%, 0.25, \frac{1}{2}$
b $\frac{1}{4}, 50 \%, 0.10$
$0.10, \frac{1}{4}, 50 \%$

3 Insert $>$, < or $=$ for each pair.
a $0.10 \square \frac{1}{4}$
(b) $\frac{1}{2}=50 \%$
C $0.5>10 \%$

4 What percentage of each flag is green?

50\%

25\%

100\%

0\%

5 Look at these Middle Eastern flags and complete the table.

Turkey

Tunisia

Algeria

Morocco

Kuwait
Sudan

Less than 50\% of the country's flag is red	More than 50\% of the country's flag is red
Algeria, Kuwait, Sudan	Turkey, Tunisia, Morocco

Iret's go shopping

1 Reduce the cost of each item by \$5.95.

Item	Price	Sale price
	$\$ 10.00$	$\$ 4.05$
	$\$ 20.00$	$\$ 14.05$

2 Fill out the missing values on each shopping docket. Use a calculator to help you.

| CJ |
| :--- | ---: |
| JJ FASHION |

Travelling overseas

1 Mike is leaving Australia to travel overseas. What currency will he need to use when he is in the following countries? Use the word bonk to help you.

a	Jorpan	yen	b	Thailand	baht
C	India	rupee	d	Indonesia	rupiah
e	Ireland	euro		Hong Kong	dollars(HK\$)

2 Mike's first stop is Thailand. He eats at a local restaurant. How much does he pay in totol? Write the answer on the receipt.

Mike's second stop is Japan. He buys some souvenirs for his fomily, pictured. How much does he pay altogether?
\qquad
$¥ 3950$
 Mike's third stop is Hong Kong. In Hong Kong, A\$1 = HK\$8. How much does Mike pay in Australian dollars (A\$) for the following items? The first one has been done for you.

Design a menu

1 Design a menu with prices for a take-away food shop. Include a name for the menu. You could include items such as pizzas, homburgers, fish, chips, salad, drinks and desserts.

Answers will vary

2 You have $\$ 30$ to spend on take-away food.

a What could you buy for dinner with this amount? \qquad
Answers will vary
b How much change would you receive? Answers will vary
c What other combinations of food could you buy for $\$ 30$?
Answers will vary
d How much change would you receive? Answers will vary

What would your friend buy from your menu? How much change would they get from $\$ 50$?

Buy a cake

1 Using a mental strategy, calculate the answer to each addition question.

Explain how you worked out Question lc. Answers will vary

2 Using a mental strategy, calculate the answer to each subtraction question.

a $59-19=40$	b $67-17=50$	c $90-21=\underline{69}$
d $100-31=\underline{69}$	e $202-95=\underline{107}$	f $92-39=\underline{53}$

Explain how you worked out Question 2f. Answers will vary

3 Every year you have a birthday party and buy your cake from Cakeland. Cakeland has a very strange way of working out the cost if you want to ice your name on the top of your cake. Each letter has a dollar value as shown in the table.

Cakeland - Pay by the letter

A	B	C	D	E	F	G	H	I	J	K	L	M
$\$ 1$	$\$ 2$	$\$ 3$	$\$ 4$	$\$ 5$	$\$ 6$	$\$ 7$	$\$ 8$	$\$ 9$	$\$ 10$	$\$ 11$	$\$ 12$	$\$ 13$
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\$ 14$	$\$ 15$	$\$ 16$	$\$ 17$	$\$ 18$	$\$ 19$	$\$ 20$	$\$ 21$	$\$ 22$	$\$ 23$	$\$ 24$	$\$ 25$	$\$ 26$

a How much does it cost to ice your name on your cake? \qquad
How did you work it out? Answers will vary
b Which students in your class would pay the following amounts to ice their name on top of their cake?

Under \$50	Between $\$ \mathbf{5 0}$ and $\$ 100$	Over \$100
	Answers will vary	

At the shops

When you add and subtract money, remember to keep the decimal points under one another.

1 Using a mental strategy, calculate the answer to each question.

Explain how you worked out Question lf. Answers will vary

2 a Calculate the total cost of each of these rows of sushi.

3.65	4.20	4.10
5.20	5.30	3.90
6.15	4.80	3.85
$\$ 15.00$		$\$ 14.30$

b How much change would you get from $\$ 20$ for each combination? \qquad

Tom	Shafi	Luke	Many	Fred	Lulu
34 kg	38 kg	45 kg	36 kg	54 kg	41 kg

Elevator 1 Elevator 2 Tom Shafi Many Luke Fred Lulu Total $=124 \mathrm{~kg}$ Total $=124 \mathrm{~kg}$
Financial Maths ISBN: 978-0-521-74537-6 Photocopying is restricted under law and this material must not be transferred to another party.
Cambridge University Press

Describing number patterns

1 Continue these counting patterns. Write the rule for each.

a $3,13,23,33,43$,	53	63	73	Add 10
b $99,88,77,66,55$,	44	33	22	Subract 11
C $2.2,2.4,2.6,2.8,3.0$,	3.2	3.4	3.6	Add 0.2
(d) $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}, \frac{5}{4}$,	$\frac{6}{4}$	$\frac{7}{4}$	$\frac{8}{4}$	Add $\frac{1}{4}$
(e) $9 \frac{1}{2}, 9,8 \frac{1}{2}, 8,7 \frac{1}{2}$,	7	$6 \frac{1}{2}$	6	Subtract $\frac{1}{2}$

2 When a number passes through the robot it is changed according to the rule programmed into the robot. Complete the number patterns after each number has passed through the robot. The first one has been done for you.

3 What is the rule for each? Write it on the robot's hand.

4 Colour the number in each number pattern that is not correct.

a	5	10	15	20	21	30
b	1.1	1.3	1.5	1.6	1.9	2.1
c	868	757	646	535	434	545

Patterns in tables

Look at the table of addition facts.

$\mathbf{+}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	3	4	5	6	7	8	9	10	11
$\mathbf{3}$	4	5	6	7	8	9	10	11	12
$\mathbf{4}$	5	6	7	8	9	10	11	12	13
$\mathbf{5}$	6	7	8	9	10	11	12	13	14
$\mathbf{6}$	7	8	9	10	11	12	13	14	15
$\mathbf{7}$	8	9	10	11	12	13	14	15	16
$\mathbf{8}$	9	10	11	12	13	14	15	16	17
$\mathbf{9}$	10	11	12	13	14	15	16	17	18

a Add all the numbers to find the total in the:
i. lst row = \qquad ii 2nd row = \qquad
iii 3 rd row $=$ \qquad iv 4 th row $=$ \qquad
b Write down the pattern you notice. \qquad increases by 9 each time

C Predict the total of adding the numbers in the:
i. 5th row = \qquad ii 6th row = \qquad
iii 7 th row $=$ \qquad iv 8 th row $=$ \qquad
2) a Start at 1.

Move diagonally from left to right.

Describe the pattern
you find. \qquad

SEPTEMBER						
		$\boxed{1}$	$\boxed{2}$	3	4	$\boxed{5}$
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

b Start at 27.
Move diagonolly from left to right.
Describe the pattern you find. \qquad -6

C Draw a square around any 4 dates on the calendar.
Add the diagonally opposite numbers. What do you notice?
Answers will vary

Associative property

1. Complete each set of addition number sentences.

a) | $2+3$ | $=\frac{5}{3+2}=\frac{5}{3}$ |
| ---: | :--- |
| (b) $9+4+10$ | $=\frac{23}{23}$ |
| $4+10+9$ | $=\frac{23}{2}$ |
| $10+9+4$ | $=\frac{23}{}$ |

Write the rule about adding numbers.

Order doesn't matter

2 Complete each set of multiplication number sentences.

(a) | 2×5 | $=\frac{10}{5 \times 2}=\frac{10}{36}$ |
| ---: | :--- |
| (b) $2 \times 3 \times 6$ | $=\frac{36}{3 \times 6 \times 2}=\frac{36}{36}$ |
| $6 \times 2 \times 3$ | $=\frac{36}{}$ |

Write the rule about multiplying numbers.

Order doesn't matter

3 Omar wants to add the numbers on these shirts. Circle the numbers you think Omar should add first. Why did you choose these numbers?

Adds to 30
4 Tanya wants to multiply the numbers on these shirts. Circle the numbers you think Tanyo should multiply first. Why did you choose these numbers?

a product is 10
5 Add these numbers in your head.
a $3+7+8=$ \qquad b) $14+17+6=$ \qquad
C $38+25+15=$ \qquad (d) $34+26+50=$ \qquad

6 Multiply these numbers in your head.
a $2 \times 5 \times 3=$ \qquad
c $4 \times 6 \times 5=\frac{120}{}$
(b) $5 \times 3 \times 4=$ \qquad
(d) $5 \times 7 \times 10=$ \qquad

Completing number sentences

1 Fill in the missing number.
(a) $7 \times \boxed{4}=28$

$18-7=11$
(d) $18 \div 3=6$
(9) $10 \times 8=80$
(e) $25-11=14$
(h) $28-18=10$
(f) $25 \div 5=5$
(i) $24+14=38$

12

2 Sue's brother spilt blue paint all over the number sentences that she wrote. Circle the number sentences where paint has been spilt over the number 12 .

3 Sue's sister spilt purple paint over the number sentence that she wrote in her book.

What might the number sentence have been?
Fill in the missing boxes and make up 4 more of your own.

Missing values

1 Fill in the missing number.
(a) $2 \times 16=32$
b) $26+16=42$
(c) $32-13=19$
(d) $33 \div 3=11$
(e) $39-19=20$
(f) $81 \div 9=9$
(g) $4 \times 14=56$
(h) $45-8=37$
(i) $56+35=91$

2 Work out the missing number and replace it with the corresponding letter from the table below. The letters will spell out the name of a popular celebration.
(a) $3 \times 8=24$
b) $3+32=35$
(c) $7-0=7$
(d) $12 \div 2=6$
(e) $40-15=25$
(f) $30 \div 10=3$
(g) $2 \times 17=34$
h $20-11=9$
(i) $67+5=72$

2	3	5	7	10	12	15	20	24
M	H	S	R	T	I	S	A	C

What is the celebration? \qquad Christmas

3 Work out what each shape is worth. Write the number inside the shape.
a $5+13=18$ and $13-10-5=8$
b $10+20=30$ and $20-10=10$
c $19+21=40$ and $21-19=2$

4 Each letter represents a number which is less than 10 . Work out the value of each letter and use the answer to work out the next

A	B	C	D
5	4	3	7

$A+A+A=15$
$A \times B=20$
$B \times C=12$
$A \times C+D=22$
$D \times A+B=\circlearrowright$
What is the value of ${ }^{\bullet}$? \qquad

Equivalent number sentences

Fill in the missing numbers to moke the scoles bolance. You could write the answer above the scales to make it easier.
a

b

C

d

e

f

2 Edie wrote some equivalent number sentences, but not all of them are correct. Use a pencil to tick (\mathbb{J}) those which are correct and cross (\boldsymbol{X}) those which are incorrect.

Edie's number sentences

a	$13 \times 3=24+15$	\checkmark		$66+34=25 \times 4$	\checkmark
c	$40 \div 5=65-47$	x	d	$92-48=\frac{1}{2}$ of 88	\checkmark
e	$91-11=45+45$	x	f	$2 \times 60=133-13$	\checkmark
g	Double 17-70-4	x	h	$\frac{1}{4}$ of $60=65-50$	\checkmark

3 Match equivalent number sentences by drawing a line between matching pairs.

$8+8+8$
$127-37$
$199+51$
$102-14$
$100 \div 5$
Triple 12
$\frac{1}{2}$ of 48
$168-132$
$\frac{1}{4}$ of 80
Double 125

4 Fill in two numbers to make the scales bolance.

