## Whe centimetre

The short way to write centimetres is cm .
There are 100 cm in I metre.
1 Make a metre strip using 1 cm dot paper.
Use a coloured pencil to mark each 10 cm .
2 Using your metre strip find four objects in your classroom between 10 cm and 20 cm . Draw and name them.

Students answers will vary.


When you measure you need to start at 'zero'.

3 Estimate objects in your classroom that you think have the following lengths. Use your metre strip to find the actual length.

| Length | Object | Actual |
| :---: | :--- | :--- |
| 10 cm |  |  |
| 30 cm |  |  |
| 60 cm |  |  |
| 85 cm |  |  |
| 100 cm |  |  |

Look at the picture of the brick wall.
If each brick is 20 cm wide and the gap between
each brick is 5 cm , how wide is the wall?
Hint: Choose a row with whole bricks.
Show your working.
An Olympic swimming pool is 50 m long. How long is this in centimetres?


## Measure in centimetres

1 a Measure the length of each pencil in centimetres (cm).

b What colour is the shortest pencil? $\qquad$ blue
What length is the longest pencil?
black
2 Measure the following body parts using your metre strip.

| length of foot |  | distance around neck |  |
| :--- | :--- | :--- | :--- |
| length of thumb |  | distance around wrist |  |
| length of ear |  | distance around face |  |
| length from knee to ankle |  | distance around ankle |  |

3 A cubit is the length from the elbow to the tip of your middle finger. A spon is the length from the tip of your thumb to the tip of your little finger when your hand is outstretched. Measure the length of your cubit and span in centimetres. Repeat those measurements for 4 of your friends. Students' answers will vary.

| Name | Cubit length <br> (cm) | Span length <br> (cm) |
| :--- | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |



Who has the longest cubit?
Who has the shortest cubit?
Who has the longest spon?
Who has the shortest spon?

Did you know that your span is the same length as the distance from your elbow to your wrist?

## Using Units of Measurement

## Metres and centimetres

Would you use metres (m) or centimetres (cm) to measure each of the following lengths?


2 Find a partner. Using both your metre strips, find objects in your classroom between 1 and 2 metres in length. Record lengths in the table. Students' answers will vary.

| Object | Measurement |
| :---: | :---: |
| length of teacher's desk | 1 m 20 cm |
|  |  |
|  |  |
|  |  |

3 Convert the following from centimetres to metre and centimetres. $130 \mathrm{~cm}=\underline{1} \mathrm{~m} \underline{30} \mathrm{~cm} \quad 186 \mathrm{~cm}=\underline{1} \mathrm{~m} \underline{86} \mathrm{~cm} \quad 215 \mathrm{~cm}=\underline{2} \mathrm{~m} \underline{15} \mathrm{~cm}$ $240 \mathrm{~cm}=\underline{2} \mathrm{~m} \underline{40} \mathrm{~cm} \quad 362 \mathrm{~cm}=\underline{3} \mathrm{~m} \underline{62} \mathrm{~cm} \quad 405 \mathrm{~cm}=\underline{4} \mathrm{~m} \underline{5} \mathrm{~cm}$

4 Look at the picture of the giraffe at the zoo. Choose answers from the boxes to represent the possible lengths of different things in the picture.

| 90 cm | 200 cm | 4 m 30 cm | 20 cm | 2 m 50 cm |
| :---: | :---: | :---: | :---: | :---: |
| height of girl |  |  | 90 cm |  |
| height of giraffe |  |  | 4 m 30 cm |  |
| height of fence |  |  | 2 m 50 cm |  |
| length of giraffe's leg |  |  | 200 cm |  |
| length of girl's hair |  |  | 20 cm |  |



## Measure in metres and centimetres

1 Estimate, then measure the following lengths or distances in metres and centimetres using a tape measure or trundle wheel. Make up three more of your Own. Students' answers will vary.

|  | Estimate | Measurement |
| :--- | :---: | :---: |
| height of teacher | 1 m 70 cm | 1 m 68 cm |
| length of chalkboard |  |  |
| height of door |  |  |
| distance across classroom |  |  |
| your height |  |  |
|  |  |  |
|  |  |  |
|  |  |  |



What are the advantages and disadvantages of using a trundle wheel instead of a tape measure?

How could you
measure the distance around a bicycle wheel?

2 The following lengths were recorded in the long jump competition.
a Complete the table.
b List the athletes in order from their longest jumps to shortest jumps.

| Athlete | $\mathbf{c m}$ | m and cm |
| :--- | :---: | :---: |
| Mike | 895 cm | 8 m 95 cm |
| Victor | 834 cm | 8 m 34 cm |
| Andrew | 847 cm | 8 m 47 cm |
| Jai | 849 cm | 8 m 49 cm |
| Gregor | 840 cm | 8 m 40 cm |
| Robert | 886 cm | 8 m 86 cm |



Mike, Robert, Jai, Andrew, Gregor, Victor
3 This boy is 1 m tall. Estimate approximately how tall each of the objects around him are.

boy $=1 \mathrm{~m}$

bike $=50 \mathrm{~cm}$

tree $=\underline{2 m}$

man $=\underline{1 \mathrm{~m} 70 \mathrm{~cm}}$

## Whe millimetre

11 Find 4 objects in your classroom of length between 50 mm and 100 mm .
Draw and name them.
The short way to write millimetres is mm . There are 10 mm in I centimetre.

## Students' answers will vary.

2. a Using a ruler measure the length of each screw in millimetres (mm).

b Colour the longest screw red and the shortest screw yellow. What is the difference in their lengths? $\qquad$ 45 mm

3 a Janis collected stamps from around the world. Estimate the length of each stamp in millimetres and then use your ruler to measure them.


Estimate $\qquad$ -


Estimate $\qquad$
Length 20 mm


Estimate $\qquad$
Length 52 mm


Estimate $\qquad$ Length 31 mm


Estimate $\qquad$
Length 32 mm
b Order them from shortest to longest (using the country name). Greece, India, USA, Australia, China Greece, India, USA. Australia. China

## Measure in millimetres

1 Last week in the Tanami Desert, Claire came across these five snakes. Estimate the length of each snake in millimetres and then use a piece of string to help you measure each of their lengths.


|  | Estimate | Measure |
| :---: | :---: | :---: |
| snake A <br> Blue |  | 60 mm |
| snake B <br> Red |  | 100 mm |
| snake C <br> Green | 60 mm |  |
| snake D <br> Orange | 110 mm |  |
| snake E <br> Yellow | 60 mm |  |

2 Would you use centimetres (cm) or millimetres (mm) to measure each of the following lengths? The first one has been done for you.

| Width of <br> match | Width of <br> diamond | Length of <br> popstick | Thickness <br> of glasses | Length of <br> tooth | Length of <br> finger |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mm | $m m$ | cm | mm | mm | cm |



## 66 <br> Using Units of Measurement

## Centimetres and millimetres

1 Fill in the missing information.
a 1 cm and $5 \mathrm{~mm}=15 \mathrm{~mm}$
c 2 cm and $5 \mathrm{~mm}=\underline{25} \mathrm{~mm}$
e 12 cm and $8 \mathrm{~mm}=128 \mathrm{~mm}$

Length can be measured in centimetres and millimetres, e.g. 4 cm and $2 \mathrm{~mm}=42 \mathrm{~mm}$.

2 a Collect a range of Australian notes.
b Measure the length of each note using cm and mm and convert your measurement into mm.

| Note | cm and mm |  | mm |
| :---: | :---: | :--- | :---: |
| $\$ 5$ | 13 cm | 0 mm | 130 mm |
| $\$ 10$ | 13 cm | 7 mm | 137 mm |
| $\$ 20$ | 14 cm | 4 mm | 144 mm |
| $\$ 50$ | 15 cm | 1 mm | 151 mm |
| $\$ 100$ | 15 cm | 8 mm | 158 mm |


c What can you say about the value of a note compared to its length? The greater the value of a note, the longer
its length.

3 Use a ruler to draw lines of these lengths.
a 70 mm

b 4 cm and 5 mm $\square$
c 8 cm and 2 mm $\square$

1 Convert from centimetres (cm) to
Remember that there are 10 mm in 1 cm . millimetres ( mm ).
(a) $2 \mathrm{~cm}=20 \mathrm{~mm}$
C $8 \mathrm{~cm}=80 \mathrm{~mm}$
e $23 \mathrm{~cm}=230 \mathrm{~mm}$
(b) $5 \mathrm{~cm}=50 \mathrm{~mm}$
(d) $12 \mathrm{~cm}=120 \mathrm{~mm}$
(f) $40 \mathrm{~cm}=400 \mathrm{~mm}$
g Car tyres are about 18 cm wide, but tyres on Formula One racing cars are about 35 cm wide. How many millimetres wide are Formula One tyres?

2 Use the graph and clues to work out what size shoe fits each child.


## Clues

a Karen's foot is 220 mm long. b David's foot is 23 cm long.
c Julie's foot is 1 cm longer than 200 mm .
d Penny's foot is the longest.
e Mike's foot is 10 mm shorter than Penny's.
Karen $=$ size $\underline{4} \quad$ David $=$ size $\underline{6} \quad$ Julie $=$ size $\underline{10}$
Penny $=$ size $\underline{10 \quad \text { Mike }=\text { size } \underline{8}}$
3 Sue, Jeff and Chris measured the width of their classroom using their shoes. They constructed the table shown.


C Explain the reason for your answer. bigger foot, fewer shoes

## Informal units of capacity

1 Estimate and then measure the capacity of a tote tray using different-sized cups. How many cups of water does it take to

Capacity means how much something holds. fill the tote tray? Students' answers will vary.

a Why is the total number of cups different for each container?
b What is the disadvantage of measuring with different units?
c How could you get results that were oll the same?


What can make measuring capacity difficult?

2 Find everyday containers that have labels on them. Draw containers that use litres and write down the number of litres they hold.

Capacity can be measured in litres. The short way to write litres is $L$.

When you have a glass of water and drink half of it, is your glass half-empty or half-full?

## The litre

1. Use a l litre ( 1 L ) container to estimate and measure the capacity of each container.

| Container | Estimate | Measure |
| :--- | :--- | :--- |
| Ice-cream <br> container |  |  |
| Bucket |  |  |
| Sink |  |  |
| Bowl |  |  |

Order the containers from smallest to largest in terms of their capacity.

Ice-cream container, bowl, bucket, sink
$\qquad$
$\qquad$
2 The capacity of this large red container is 50 litres (50 L). How many of each smaller container is needed to fill the red container?


| Capacity | 1 L | 5 L | 10 L | $\frac{1}{2} \mathrm{~L}$ |
| :--- | :---: | :---: | :---: | :---: |
| Number <br> needed | 50 | 10 | 5 | 100 |

3 Solve these problems.
a Mum's car holds 45 L of petrol and Dad's holds 60 L . How many litres of petrol are needed to fill both cars?

105L
b I filled my bath with 55 L of water. I let out 28 L . How much water is left in the bath?
$27 L$

What costs more: a litre of milk, a litre of petrol or a litre of orange juice?
(You may need to do some investigating first.)

Students' answers will vary.


## Using litres

1 Find and list containers that are less than 1 L , about 1 L or more than 1 L in capacity. Students' answers will vary.

| Less than 1 L | About 1 L | More than 1 L |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

2 a What is a water meter used for?
Most water used by people in cities is used in and around the home.
b At your home, where is the water meter?
3 Order these activities from 1 to 4, using least water to using most water.

2 Cleaning your teeth 3 Washing the dishes
4 Having a bath $\quad 1$ Drinking a glass of water
4 When a toilet is flushed, about 8 litres ( 8 L ) of water is used.
A typical shower uses 160 litres ( 160 L ) of water.
a How much water is used in 2 flushes? $\qquad$
b How much water is used in 10 flushes? $\qquad$ 80 L
c How much water is used in 2 showers? $\qquad$ 320 L
d Do you use more water having 3 showers or flushing the toilet 60 times? Show all your working.

$$
\text { Shower }=160 \times 3=480 \mathrm{~L}
$$

$$
\text { Toilet }=60 \times 8=480 \mathrm{~L} \text { They are the same }
$$

Discuss ways you can help save water in your home and around the school.


## Measure volume in informal units

1
© Name the 3D objects.

$\qquad$

rectangular prism

cylinder

pyramid

sphere
b Colour the 3D objects which stack well on top of each other.
c Which of these 3D objects placed side by side would completely cover the base of a large empty box without leaving spaces?

Cube, rectangular prism, pyramid
2 Estimate and then measure the volume of a matchbox using popcorn, Centicubes and marbles.

|  | Estimate | Measure |
| :--- | :--- | :--- |
| popcorn |  |  |
| centicubes |  |  |
| marbles |  |  |

Volume means the amount of space an object takes up.


The units have different volumes
b What is the disadvantage of measuring with different units?
You may get different results
c Which unit was best for measuring the volume of the matchbox? Centicubes Explain your answer. The cubes fit into the matchbox without leaving any space

When companies package their products, which 3D objects are generally used? Why do they use these kinds of packaging?

Take 2 sheets of A4 paper.
Roll one into a short cylinder and one into a tall cylinder. Does one hold more popcorn than the other?

## The cubic centimetre

1 Make these models and
Volume can be measured in cubic centimetres. The short way to write cubic centimetres is $\mathrm{cm}^{3}$. record their volume.
Each cube is l cubic centimetre ( $\mathrm{cm}^{3}$ ).
a


Volume $=$ $\qquad$ $\mathrm{cm}^{3}$
C


Volume $=$ $\qquad$ $\mathrm{cm}^{3}$
b


Volume $=$ $\qquad$ $\mathrm{cm}^{3}$
d


Volume $=$ $\qquad$ $\mathrm{cm}^{3}$

2 Make these models and record their volumes. Make sure you count the cubes you cannot see.
a

b


Volume $=\underline{10} \mathrm{~cm}^{3} \quad$ Volume $=\underline{11} \mathrm{~cm}^{3} \quad$ Volume $=\underline{q} \mathrm{~cm}^{3}$
Volume $=\underline{10} \mathrm{~cm}^{3} \quad$ Volume $=\underline{11} \mathrm{~cm}^{3} \quad$ Volume $=\underline{q} \mathrm{~cm}^{3}$
$\qquad$
Volume $=\underline{10} \mathrm{~cm}^{3} \quad$ Volume $=\underline{11} \mathrm{~cm}^{3} \quad$ Volume $=\underline{q} \mathrm{~cm}^{3}$
d Which model has the smallest volume? a
e Which model has the largest volume? $\qquad$ $b$

## Volume of prisms

1 Collect the following packets. Estimate, and then measure their volume. Estimate and measure two more of your own. Don't forget to include the units. How many Centicubes or Base 10 shorts will fit into each one? Students' answers will vary.

| Object | Estimate | Measurement |
| :--- | :--- | :--- |
| matchbox |  |  |
| chalk box |  |  |
| lunch container |  |  |
|  |  |  |
|  |  |  |

2 This box fits 8 Centicubes on the bottom layer.
a How many would it fit on 2 layers? 16
b How did you work out your answer? $\qquad$
$8 \times 2=16$

c If this box is 3 layers high what is its volume?

$$
24 \mathrm{~cm}^{3}
$$

3 This box can fit 15 Centicubes on the bottom layer. If it is 2 layers high, what is the volume?


$$
V=30 \mathrm{~cm}^{3}
$$

4 This object has a volume of $12 \mathrm{~cm}^{3}$. Make another object with a volume of $12 \mathrm{~cm}^{3}$ also in the shape of a prism. How does it look? Draw or describe it.

Students' answers will vary.


## Informal units of mass

1 Estimate the mass of an apple using stones, marbles and Base 10 shorts as your unit. Use an equal arm balance to measure the mass of the apple using the same materials. Students' answers will vary.

| Unit | Estimate | Measure |
| :--- | :--- | :--- |
| stones |  |  |
| marbles |  |  |
| Base 10 |  |  |

a Was the total number different for each unit of measurement? $\qquad$
b What is the disadvantage of measuring with different units?
$\qquad$
$\qquad$
c How could you get results that were oll the same?

2 Andrew measured the mass of a bag of rice on an equal-arm bolance using marbles. He recorded the measurements in this table.
Fill in the missing words to make these sentences correct.

Did you notice that the heavier the measuring unit, the less you need to use to balance the object?
a The green marbles are heavier than the red marbles.
b The green marbles are lighter thon the blue morrbles.

| Unit | Measure |
| :--- | :---: |
| red marbles | 24 |
| blue marbles | 12 |
| green marrbles | 18 |

3 Zachary measured the mass of his two kittens. The ginger one had a mass of 40 tennis balls and the grey one had a mass of 25 golf boalls.
Do you know which kitten was heavier? Grey
Explain your answer. The golf balls are heavier than tennis balls even though there are fewer of them.

## the kilogram

Using a l kg mass, find The mass of an object can be measured in objects that are 'less thon', 'about the same as' or 'more than one kilogram' by hefting.

| Less than 1 kg | About the <br> same as 1 kg | More than 1 kg |
| :--- | :--- | :--- |
| Students' answers will vary. |  |  |
|  |  |  |

## Hefting is a

 useful method to compare the mass of two objects.Place a 1 kg mass in one of your hands and an object in the other hand.

Lift both masses at the same time to estimate which one is heavier.

When travelling on a plane, there are weight restrictions on your luggage. Why?
What is the baggage limit on domestic and international flights?

2 a Estimate and then measure the mass of each of the following objects in kilograms using an equal-arm balance.


What are some of the advantages and disadvantages of hefting?
b Choose two more of your own.
c Calculate the difference between your estimate and the actual mass.

| Object | Estimate | Measure | Difference |
| :--- | :--- | :--- | :--- |
| school bag |  |  |  |
| tape dispenser |  |  |  |
| computer keyboard |  |  |  |
|  |  |  |  |
|  |  |  |  |

Research the masses of different Australian animals. Create a table and order them according to their full-grown weight.

## Compare mass

How many of each classroom object does it take to make l kilogram? Estimate, measure and then calculate the difference between your estimate and the actual number to make 1 kg .
and the actual number to make 1 kg .

| Object | Estimate | Measure | Difference |
| :--- | :--- | :--- | :--- |
| glue stick |  |  |  |
| dictionary |  |  |  |
| Base 10 flat |  |  |  |



Remember that the greater number of objects you need to make I kg, the lighter the object is.
a The $\qquad$ is lighter than the $\qquad$ glue stick .
b The $\qquad$ is heavier than the $\qquad$ .


2 Compare the mass of the above objects by completing these sentences.

3 Anita wants to pack her supermarket bag carefully and make sure the heavier things are at the bottom so that they don't squash the lighter objects. Look at the table of measurements and draw how Anita should pack the items into the bag.

| Item | How many do I <br> need to make l kg? |
| :--- | :---: |
| packet of teabags | 4 |
| bag of flour | 1 |
| tin of fruit | 2 |
| packet of biscuits | 5 |



4 Which is the cheapest piece of fruit to buy: one banana, one apple or one orange? Use a calculator to help you.

| Item | How many do I <br> need to make 1 kg? | Cost for 1 kg | Cost for 1 item |
| :--- | :---: | :---: | :---: |
| banana | 6 | $\$ 3.60$ | $\$ 0.60$ |
| apple | 5 | $\$ 2.25$ | $\$ 0.45$ |
| orange | 3 | $\$ 1.50$ | $\$ 0.50$ |

## Grams

1 Would you use kilograms (kg) or grams ( g ) to measure the mass of each of these items?

laptop

go-kart

mobile phone
c
bike

d

mouse

egg
b

a

e $\qquad$
f kg
g kg
h $g$

a Which souvenir is the heaviest? $\qquad$
boomerang
b Which souvenir is the lightest? $\qquad$ key ring
c Order the souvenirs from heaviest to lightest (use the name of the souvenir).
boomerang, cat, magnet, spoon, key ring
d How much would two identical magnets weigh?
e Which two souvenirs have a total mass of 520 g ?
key ring and cat
f Use a calculator to find the total mass of all of the souvenirs. 1680 g

## Minutes in analog time

1 The numbers and hands have fallen off this analog clock. Put the numbers back onto the clock in their correct order and the hands to show 9 o'clock.


An analog clock has a minute hand and an hour hand.
The minute hand (the long hand) shows minutes past or to the hour.

The hour hand (the short hand) shows hours.


2 How many minutes does it take the minute hand to move from one number to the next? 5 mins How did you work this out? By counting the spaces between one number and the next.

3 How many minutes does it take the minute hand to move from:


4 How many minutes does it take the minute hand to move from:
a 1 to 2? 5
b 3 to 5 ? 10
C 7 to 10? $\qquad$ d 2 to $7 ? \quad 25$
e 4 to 6? 10
f 5 to 11? 30

5 How many minutes does it take the hour hand to move from one number to the next? $\qquad$ How did you work this out?

There are 60 minutes in an hour.

## Quarter-past, quarter-to and halfopast

1 Write the minutes (every 5 minutes) in the boxes around the anolog clockface.

2 Divide the clockfoce into quarters.
a What numbers relate to 20 'quarter-past'? $\qquad$ 15
b What numbers relate to 'quarter-to'?

| 9 |
| ---: |
| 45 |

c What numbers relate to 'holf-past'?

| 6 |
| ---: |
| 30 |


d In the term 'half-past' what does 'half' refer to?
Half of the hour.
3 Write the times shown on the clockface.

(a)Quarter-past 4 b Half-past 8 (c)Quarter-to 12 d Quarter-past 3

e Quarter past 1
f $\qquad$ g
Quarter-to 8
h Quarter-to 2

## What is the time?

1 Draw the times on the clockface.

b Half-past 7
a Quarter-past 3

e $\frac{1}{4}$ post 2

f $\frac{1}{4}$ to 11


g $\frac{1}{2}$ past 6

(h) 15 minutes past 4

2 Match the times.


3 Which hour has just passed on these clocks? The first one has been done for you.


5 o'clock
b $\qquad$ 3 o' clock
d $\qquad$ $110^{\circ}$ clock

## time problems

1 List some activities that take the following amounts of time.

| 15 minutes <br> (one-quarter of <br> an hour) | 30 minutes <br> (half an hour) | 45 minutes <br> (three-quarters of <br> an hour) |
| :---: | :---: | :---: |
| Walking the dog <br> around the block | Baking a cake | Doing a lo0-piece |
| puzzle |  |  |

2 Solve these time problems.
a Paddy went swimming at 4 o'clock and got out of the pool at half-past four. For how long did he swim? $\qquad$ 30 mins
b If it takes holf an hour to walk to school from home, how long will it take to walk to school and back home again? $\qquad$
c Kate had an appointment at the dentist at half-past three. She didn't arrive until 4 o'clock. How late was she? $\qquad$
d The movie started at 2 o'clock and finished at half-past three. What was the running time of the movie? $\qquad$
e Nicole went to bed at 10 o'clock and woke up 9 hours later. What time did she woke up? $\qquad$ 7 o'clock
$f$ Rock cakes take 15 minutes to cook. If a batch of cakes goes into the oven at half-past one what time will they be ready?
$\qquad$
Quarter to 2
3 Look at this clock. Roman numerals have been used to represent the numbers 1 to 12 . Fill in the table showing how our numerals (Hindu-Arabic numerals) match the Roman numerals.


| Hindu-Arabic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roman | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII |

## Read digital time

1 Match the digital times in numbers and words.


Digital time is read as minutes past the hour. $1: 40$ is read as 40 minutes past I, or one-forty.

2 Write digital times for the times shown in words.
a two twenty-four
b ten-thirty
c 2 minutes past 8
02:24
$10: 30$

$$
08: 02
$$

3 This watch shows ten-twenty.


This signpost in the National Park shows how long it takes to walk to each place. What time will you arrive at each of the following places if you leave at 10:20?
Draw the time onto the digital clock.


## Compare digital and analog time

1 Complete the table.

| Time in words | Digital time | Analog time |
| :---: | :---: | :---: |
| ten-fifteen | $10: 15$ |  |
| five-thirty six | $5: 36$ |  |
| eight mins past four | 1.1515 |  |

2 What does this sign tell motorists? 2 hour parking time allowed

## 2 Parking

Draw onto the digital and analog clocks the time that the driver must return to their vehicle if they stort porking at:
a $9: 25$
b three-fourteen
c quarter to 8


## 4 米 $\square+\triangle \because \because \because:$ More time problems

1 Complete the two activities below. Record the start and end time of the activity on both an analog and digital display. Calculate how many minutes the activity took.

| a eating an apple. |  | (b) reading a picture book. |  |
| :---: | :---: | :---: | :---: |
| Start time | End time | Start time | End time |
| Analog |  | Analog |  |
| Digital $01: 10$ | $01: 15$ | Digital $09: 30$ | 09:45 |

2 Write in digital time:
a) 5 minutes before 3:40 3:35 b 10 minutes after 8:17 8:27

C 5 minutes after half past $10 \xrightarrow{\text { 10:35 }}$
d 10 minutes before 3:05 2:55
3 Solve these time problems.
a Kala went to the gym at 4 o'clock and came home at 5:30. How long was she away? $\qquad$ 1 hr 30 mins
b Aziz hod an oppointment with the doctor at 2:45. He didn't arrive until 3:05. How late was he? 20 mins
c Angus's TV program started at 7:30 and finished threequarters of on hour later. What time did the program finish?

$$
8: 15
$$

d Calam went to his grandma's at 2:15 and stayed there for 2 and a holf hours. What time did he leave? $\qquad$ $4: 45$
e Potatoes take 30 minutes to boil. If Rob wants the potatoes to be ready by 5.15, when must he put them in the boiling water?

There are 60 minutes in one hour and 60 seconds in one minute.

1 List some activities that take the following amount of time.

| About 1 second | About 10 seconds | About 30 seconds |
| :---: | :---: | :---: |
| Clicking your fingers | Tying your shoelace | Saying the alphabet |

2 Knowing your $6 \times$ number facts is helpful when learning about seconds. Complete the table.

| Minutes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of seconds | 60 | 120 | 180 | 240 | 300 | 360 | 420 | 480 | 540 | 600 |
| 6x number facts | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |

How many seconds in

| a | 2 minutes? | 120 |  | 4 minutes? | 240 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| c | 7 minutes? | 420 | c | 8 minutes? | 480 |
| e | 10 minutes? | 600 | t | $\frac{1}{2} \propto$ minute? | 30 |

3 Toby, Derek, Brianna and Julia each held their breath under water at the pool. Toby held his breath for 12 seconds, and Derek held his for 8 seconds longer than Toby. Brianna held her breath for $\frac{1}{2}$ a minute, and Julia held hers for twice as long as Derek. How long did each swimmer hold their breath for?


| Toby | Derek | Brianna | Julia |
| :---: | :---: | :---: | :---: |
| 12 seconds | 20seconds | 30seconds | 40 seconds |

How long is 1000 seconds in hours and minutes? Use a calculator to help you.

