Writing 4-digit numbers

	Draw a line to match	each nun	neral to it	s correct	name.	
	a one thousand, six	hundred	and twer	nty-nine.		-7192
	b seven thousand, a	one hundi	red and n	linety-tw		<i>~</i> 5913
	c three thousand, th	nree hund	lred and i	fifty-eigh	nt —	-3358
	d five thousand, nin	ne hundre	d and thi	rteen/		1629
	e four thousand, sev	ven hundi	red and e	eighty-fo	ur	- 4784
	Write the numbers na	med in th	ese sente	nces.		
	a Five thousand, siz people went to the	x hundred e stadium	l and fort	y two	56	42
	b The crowd ate on and thirty-one pie	e thousan es.	d, two hu	indred	12	31
	C They drank four t and fifty cans of c	housand, lrink.	nine hun	dred	49	150
	d Two hundred and bought that aftern	e leven fl noon.	ags were		2	11
3	Use the word bank	Word ba	ank			
	to write the numeral on each athlete's singlet in words.	one six eleven sixteen thirty eighty	two seven twelve seventeen forty ninety	three eight thirteen eighteen fifty hundred	four nine fourteen nineteen sixty thousand	five ten fifteen twenty seventy
2631	T two	thousand six	hundred and	thirty one		
	one :	thousand seven	hundred and	sixty four		
1764				,		
997		nine hundred	d and eiahtu	seven		
987	Three three	nine hundred	d and eighty bundred and	seven twenty five	0	

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party. Cambridge University Press

Number and Place Value

Representing 4-digit numbers

2

3

Write the number represented by the Base 10 material.

Thousands	Hundreds	Tens	Ones	Number
				3476
				1185
			00000000	8549

Make and then draw Base 10 materials to represent 2579 and 3256.

Thousands	Hundreds	Tens	Ones	Number
			000000000000000000000000000000000000000	2579
				3256

Place each number where it belongs along the number line.

Before and after

1

Write the number that is represented by each of the Base 10 materials. Write the number before and after it. The first one has been done for you.

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

Arrange the mountains in descending order of height.

Continent	Mountain	Height (m)
Africa	Kilimanjaro	5895
Antarctica	Vinson Massif	4892
Australia	Kosciuszko	2228
Asia	Everest	8848
Europe	Elbrus	5642
North America	Denali	6194
South America	Aconcagua	6962

Research Conquering the highest peak on every continent is a great mission. Who was the first person to do this? What is the height of the secondhighest peak on each continent?

8848, 6962, 6194, 5895, 5642, 4892, 2228

Number and Place Value

Comparing and counting

l Us nu	e the grec imbers.	ater thai	n (>) oi	r less th	an (<) sign	to cor	npare	e the
α	1245	<u><</u> 547	2 b	2817	> 27	732	c 46	o7 _<	407
2 No	ame a nur	nber							
α	greater	than 20	35, but	less tha	n 2305			2102	
b	less than	n 4080,	but grea	ater tha	n 4008		L	+040	
3 Co	ount forwa e numbers	irds by s in the	10 by ac carriage	dding a es.	Base 1	.0 long	g each	n time	e. Write
a	2137	2147 2	157 216	7 2177	2187	2197	2207	2217	2227
		AD GD GF	DODODO		1 1 1	<u>"</u>	9090	00000	Sood T
b	9050	9060 90	908	0 9090	9100	9110	9120	9130	9140
5 Co	1765 6042 ount forwo	1755 6032 Irds by	1745 6022 100. Wri	1735 6012 te the r	1725 6002 1umber	1715 6992 rs in th	5 17 2 64	705 182 riages	1695 6972 5.
a			767 286	7 2967	3067	3167 90900	3267 JD JD	3367	3467
b		121 2 90 90 90 90	21 321	421	521 310 310	621 3030	721 30 30	821 303	921
6 Fil by	l in the m 100.	issing n	umbers	in the t	able w	hen co	ountir	ng ba	ckwarc
	9970	9870	9770	9670	9570	9470) 93	370	9270
a		2							

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

Number and Place Value

Cambridge University Press

5

On the hundreds chart, colour odd numbers green and even numbers red.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

*

Describe the pattern that is made on the hundreds chart.

columns of odd and even numbers alternate

Continue these odd and even number patterns.

α	58	60	62	64	66	68	70	72
b	31	33	35	37	39	41	43	45
С	155	157	159	161	163	165	167	169
d	290	292	294	296	298	230	232	234

5 Explain why 14 is an even number and 41 is an odd number.

14 can be divided in to two parts evenly, 41 cannot.

6

6

2

4

Explain why the number 443 is odd. 443 cannot be divided into

to equal parts

Number and Place Value

Odd and even 2

XX

1 Place the number	rs into the c	orrect box in the	e table.
21 22 16		odd	even
	2-digit numbers	21	22, 16, 26, 48, 10
	3-digit numbers	811	194
2 a What does th	is sign tell n Distance	notorists?	Glendambo 113 Coober Pedy 366 Cadney Park 517 Marla 597
b List 3 places which is an c Glendan	that display odd number nbo. Cadney Park	a distance . Marla	Alice Springs 1050 MAJOR REST AREA LAKE HART 40
c i How far is . ii Is this dista iii Explain hor	Alice Spring nce an odd w you know	s from this sign? or an even num this. <u>ends</u> unumber	1050km ber? <u>even</u> vith 0, 0 is an even
3 a I'm thinking a and its tens a number be?	of a 3-digit r and ones dig	number. Its hund gits are even. Wi 324	lreds digit is odd, nat might the
b I'm thinking o odd numbers	f a 3-digit nu . What migl	umber. The digits ht the number be 579	are three consecutive e?
4 In your own word 4, 6 and 8 are eve	s, explain w	hy numbers that pers ending in 1,	end in the digits 0, 2, 3, 5, 7 and 9 are odd.

7

Number and Place Value

Look at th	e signp	oost a	nd fill	in the tal	ole.	2750 km	BRISBANE	BERLIN 16.025
City	Distan	ce to	Place	value of	the 2	1001 km M	ELBOURNE	
Adelaide	1320	0Km		ten	- 13	20 km AD	ELAIDE	PERTH
Brisbane	2750)Km		thousand			AND LE SOUTH POLE	
Hobart	2100)Km		thousand		47'	88 km WELLINGTON	
Perth	1462	?Km		one	2	080 km S	DNEY	CAPE TOW
Sydney	2080)Km		thousand		210	0 km HOBART	
Colour the	e city c	losest	to the	siannost	in ea	ch pai	r	
	, only 0	Adal		sigriposi	III CO		Devit	1.
a sya	ney	Adel	aiae	٩	Но	bart	Pert	n
c Brisk	ane	Syd	ney	d	Ade	laide	Pert	h
Which cit	v has c	t dista	ince to	o it with tl	ne fol	lowina	place v	alues?
a tong	, <u> </u>	udneu		5 0 hi	ındro	de	Melhour	
	,	<u>yuncy</u>		9 110	mare	us		
2 one	s P	'erth		4 th	ousar	nds	VV ellingto	<u>n</u>
Look at th	e blan	k sign	post.			285	han Lila Ar	
α Fill in	the pla	aces c	and dis	stances		205	rem Lity 10	wn
as foll	lows fro	om toj	o to bo	ottom.		Г	17286	m Roseville
Lily To	own	285 k	m			L		
Rosev	ille	1728	km		<	1840	km Port As	ster
Port A	ster	1840	km					
b What	is the 1	olace	value	of the 8 i	n ead	ch plac	e?	
i Lil	y Towr) 1	1	tens		T	U.	
ii Ro	seville		0	ones				

* *

It is furthest to travel from Lily Town to Roseville as they are in opposite directions.

Number and Place Value

MiB Card 9

8

	••••			
The role of zer	0	lt is not whole	necessary to be number with a	egin a zero.
1 What is the place value	e of the zero in	n each of the	ese number	s?
α 4740 <u>ones</u>	b 1082	hundreds	<mark>c</mark> 2607 _	tens
d 6550 <u>ones</u>	<mark>e</mark> 304	tens	<u>f</u> 108 _	tens
9 90 ones	h 6061	hundreds	i 40 _	ones
Colour the keys on each these numbers. Use this	h calculator t colour code:	hat you wou	ld press to	display
Thousands Hund	reds	Tens	One	es
2756	901	3	75	39
(m+) (m-) (m-) (m-) (1) (2) (3) (4)	m+ m- mc mr 7 8 4 5 6 2 3		(1) 2	

3 Which of the above calculators has a number closest to the following numbers?

е

1 2 3 0.

d

С

4375

89×

6

้ต่

m+ m- mc mr 🛟

4

0

1)(2)

α	4000	d	b 9000	Ь
С	1000	e	d 2000	f
е	3000	a	Í 8000	с

In how many ways can 0, 2, 4 and 8 be written as a 4-digit number? Write down all the numbers you made in ascending order.

$\sim \cap$	2048	4028	8024	
	2084	4082	8042	
	2408	4208	8204	
	2480	4280	8240	
	2804	4802	8402	MiB
	2840	4820	8420	Card 11

C

906

+

m+ m- mc mr 🗧

78<mark>9</mark>8

4 5 6

1 2 3

C

Number and Place Value

0

0

f

С

2143

m+ m- mc mr 🛟

789×

(5) (6)

์ ต

+

Expanded notation

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

When rounding to the nearest thousand, numbers that end in 499 or less round down and numbers that end in 500 or more round up.

When rounding to the nearest hundred, numbers that end in 49 or less round down and numbers that end in 50 or more round up.

More rounding

a Round these numbers to the nearest 10. i 34 30 ____ii 176 ____/80 ____iii 772 ____770 ____ b Round these numbers to the nearest 100. i 161<u>200</u> ii 1422<u>1400</u> iii 6681<u>6700</u> 2 The radius of Earth is 6371 km. Is 6371 closer to: α 6000 or 7000? <u>6000</u> b 6300 or 6400? <u>6400</u> **c** 6370 or 6380? <u>6370</u>

This table shows the longest river on each continent.

Continent	River	Length	Round to the nearest					
		(km)	Thousand	Hundred	Ten			
Africa	Nile	6650	7000	6700	6650			
Asia	Yangtze	6300	6000	6300	6300			
Australia	Darling	2739	3000	2700	2740			
Europe	Volga	3692	4000	3700	3690			
North America	North America Mississippi		4000	3700	3730			
South America	Amazon	6400	6000	6400	6400			

a Round each length up or down to the nearest thousand, hundred and ten kilometres.

b Which river has a length closest to 7000 km? <u>Nile</u>

d Order the rivers from longest to shortest in length.

Nile, Amazon, Yangtze, Mississippi, Volga, Darling

Students' answers will vary.

Number and Place Value

Addition on the hundreds chart

17

5

Look at these jigsaw pieces from the hundreds chart and fill in the missing numbers. The first one has been done for you.

45

	14	15	16		26	27	28		54	+ 5	55	56		88	8 8	39	90		U
		25				37		I		é	5				9	19			
2	Usin	g the	e inf	orm	atior	n in	Que	stior	1 l,	wł	nat	is:							
	α	l mo	ore t	han	15?		16	_		b	l n	nore	e thc	n s	55?		56		
	С	l les	s the	an l	5?		4	_		d	l le	ess f	han	55	5?		54		
3	Usin	g the	e inf	orm	atior	n in	Que	stior	ı 1,	wł	nat	is:							
	α	10 n	nore	thar	n 27'	?	37	_		b	10	mo	re th	an	89	? _	99		
	С	10 le	ess tł	nan	27?		17	_		d	10	less	tha	n 8	39?		79		
4	Use	the i	nfor	mat	ion i	n Qı	Jesti	on l	to	he	lb ì	<i></i> ou	ans	we	r th	ese	€.		
	α	27 +	1 =	28	b	89	+ 1 =	= <u>90</u>		С	15 -	+ 10) = <u>2</u>	5	d	55	6 +]	0 =	65
	e	27 –	1 =	26	f	89 -	- 1 =	88		g	15 -	- 10	=	5	h	55	- 1	0 =	45
5	Use	the 1	nunc	dred	s cho	art to	o an	swei	r th	ese	€.								
	α	34 +	1 =		35			b	76	+ 1	0 =	=	86						
	С	72 –	1 =	=	71			d	42	- 10) =		32						
	е	80 –	10	=	70			F	Iun	dre	ds c	hart	1						
6	Use	the l	nunc	dred	s cho	art.		Г	1	2	3	4	5	6	7	8	9	10	
	α	Start	at 1	l4, a	idd 1	10.		ŀ	- 11	12	13	14	15	16	17	18	19	20	
		Colo	our th	nis n	umk	ber b	lue.	F	21	22	23	24	25	26	27	28	29	30	
	b	Start	αι . 	36, a sia n		20. 20. r.	~ d	ŀ	31	32	33	34	35	36	37	38	39	40	
		Start	our ir	115 11 12 ci	unic	ract	ea. I∩		41	42	43	44	45	46	47	48	49	50	
		Colo	our th	nis n	umt	ber v	ello	w.	51	52	53	54	55	56	57	58	59	60	
	d	Start	at 7	78, s	ubtro	act 2	20.		61	62	63	64	65	66	67	68	69	70	
		Colo	our th	nis n	umk	ber b	now	n.	71	72	73	74	75	76	77	78	79	80	
	е	Start	at 2	21, a	idd 5	50.			81	82	83	84	85	86	87	88	89	90	
		Colo	our th	his n	umb	ber n	ink.		91	92	93	94	95	96	97	98	99	100	

Colour this number pink.

Number and Place Value

Cambridge University Press

Jump strategies

ISBN: 978-0-521-74535-2

α	2	12	22	32	4Z	52	62	72	82	92	
b	7	17	27	37	47	57	67	77	87	97	
С	5	15	25	35	45	55	65	75	85	95	
d	I	11	21	31	41	51	61	71	81	91]
Jump st	rategy	,			+	10	+	10			
43 + 25	= 43 +	20 + 5					(+ +	+	
	= 63 +	5 = 68	;		43	5	3	6	3		68
Write th tens first	e first n and the	umber en by oi	on an e nes to r	empty r perform	number n the ca	line. Co Iculatio	ount for n.	wards	or back	wards I	by
76 – 34	= 76 – 1	, 30 – 4	I				- 10		- 10		- 10
:	= 46 - 4	4 = 42	(- -		-1				\searrow	
			4	2		44		56		66	76
2 Solv Reco	e the ord ye	se nu our a	ımbe nswe	r sen ers on	tence the c	es usii open	ng th num	e jun ber li	np str .ne.	ateg	у.
2 Solv Reco a b c	re the ord yo 23 68 53	se nu our a + 31 + 25 - 22		r sen r sen r son $^{+10}$ 23 33 $^{+10}$ 58 78 $^{-1}$ $^{-1}$ $^{-1}$ $^{-1}$	tence the 43 +10 +10 +10 +10 +10 +10 +10 +10 +10 +10	$\frac{10}{53} + 10 + 11 + 11 + 11 + 11 + 11 + 11 + 1$	ng th num +1 22 93	e jum ber li	np str .ne.	ateg	у.
2 Solv Reco D C d	re the ord yo 23 68 53 92	se nu our a + 31 + 25 - 22 - 67	$= \frac{1}{2}$	r sen: ers on +10 +1	tence the 43 +10 +10 +10 +10 +10 +10 +10 +10 +10 +10	1000000000000000000000000000000000000	ng th num +1 22 93	e jum ber li	-10 -10 -72	αteg.	у. -10
 2 Solv Reco a b c d 3 Rak oper strat was 	e the ord ya 23 68 53 92 esh w n nun tegy. he a	se nu our a + 31 + 25 - 22 - 67 vrote nber Wha sked	imber nswe $=$ $\frac{1}{2}$ $=$ $\frac{1}{2}$ his so line u to so	r sen ers on +10 23 $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+1023$ $+10-1$ -1 $-1-1$ $-1-1$ -1 $-1-1$ -1 $-1-1$ -1 $-1-1$ -1 $-1-1$ -1 $-1-1$ -1 $-1-1$ -1 $-1-1$ -1 -1 $-1-1$ -1 -1 $-1-1$ -1 -1 $-1-1$ -1 -1 -1 $-1-1$ -1 -1 -1 -1 -1 -1 -1	tence the $\frac{1}{43}$ $\frac{+10}{43}$ $\frac{+10}{43}$ $\frac{-1}$	es usin open +10 +1 53 54 1+1+1+1 39 90 91 9 53 -10 53 -10 31 32 h an jump ences	ng th num +1 22 93		-10 -10 72	ateg	Y. -10 92 you find easy easy about the tegy?
 2 Solv Reco a b c d 3 Rak oper strat was a 	re the ord yo 23 68 53 92 esh w n nun tegy. he a	se nu our a + 31 + 25 - 22 - 67 vrote nber Wha sked + 30	imber nswe = = = = tine u to so	r sen ers on +10 23 $-33+1033$ $+1033$ $+1033$ -1 -131 32 $33-1$ $-1-1$ -1 $-1-1$ -1 $-1-1$ $-1-1$ -1 $-1-1$ -1 $-1-1$	tence the $\frac{1}{43}$ $\frac{+10}{43}$ $\frac{+10}{43}$ $\frac{-1}{43}$ $\frac{-1}{43}$ $\frac{-1}{28}$ 29 30 3 ns or the j sente	$\frac{10}{10} + 10 + 10 + 10 + 10 + 10 + 10 + 10 +$	hg th num	e jum ber li	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	ateg ateg hat did not so np strat - 20	Y. -10 92 you find easy easy about the tegy?
2 Solv Reco a b c d 3 Rak ope: strat was a	re the ord yo 23 68 53 92 esh w n nun tegy. he a 53	se nu our a + 31 + 25 - 22 - 67 vrote nber Wha sked + 30	imber nswe = = = = this so line u to so t	r sen ers on +10 33 +10 33 -1 $-1-1-1-1-1-1-1-1$	tence the $\frac{1}{43}$ $\frac{+10}{43}$ $\frac{+10}{43}$ $\frac{-1}{43}$ $\frac{-1}{28}$ 29 30 2 ns or the j sente	es usin open +10 +1 53 54 1+1+1+1 39 90 91 9 53 -10 53 -10 53 -10 -1 -10 31 32 h an hump ences	$rac{1}{10}$	e jum ber li	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	ateg	y. ¹⁰ ⁹² ¹⁰ ⁹² ¹⁰ ⁹²

Skip count by 10 to complete each pattern.

© Greg Weeks 2012

Photocopying is restricted under law and this material must not be transferred to another party.

Cambridge University Press

Split strategy

1 Split eac number and one first one started t	ch into tens es. The has been for you. Split strategFirst split eachAdd the tens fiAdd the ones.Add the two au $43 + 25 = 68$	7: 43 + 25 number into tens and ones. rst. nswers.	40 + 3 + 20 + 5 40 + 20 = 60 3 + 5 = 8 60 + 8 = 68
2	8 50 7 50 7	c 31 d	69
27 + 12 = 31 + 65 = 44 + 53 = 72 + 26 =	20 + 7 + 10 + 2 = 39 30 + 1 + 60 + 5 = 96 40 + 4 + 50 + 3 = 97 70 + 2 + 20 + 6 = 98		hat did you find easy not so easy about the t strategy?
3 Look at 3 45 15 17 12 54 20 38 11	the grid. Link two numb Write down some <u>45 + 15</u> Write down some <u>3 + 17</u>	ers horizontally or e links which total r <u>54 + 15</u> e links which total l <u>17 + 20</u>	vertically. more than 50. <u>20 + 38</u> ess than 50. <u>45 + 3</u>
C Write do d What is e What is f Write do	own a link that totals 50 the smallest total you c the largest total you ca own as many totals as p	an find? n find? ossible. Are the tote	+ 12 20 69 als odd or even?
38 + 11 17 + 20 15 + 54	Odd totals = 49 $11 + 38 = 49$ = 37 $54 + 11 = 65$ = 69	Even to $3 + 45 = 48$ 3 $45 + 15 = 60$ 3 $12 + 54 = 66$ 3	otals 3 + 17 = 20 20 + 38 = 58

15 Number and Place Value Cambridge University Press

17 + 12 = 29

Add and subtract

• Subtract one of the above number How did you work it out? Students' an	rs from 58 nswers will v	3.58 - <u>23</u> =
Solve these problems. Check your	answers	with a calcul
Bec scored 32 goals and Shane scored 27 goals. How many goals did they score altogether?		Working ou + <u>32</u> <u>27</u> 59
Alan had 78 golf balls in his golf bag. He lost 15 during a round of golf. How many did he have left?		$-\frac{78}{15}$
Abhi hit 59 runs and Pritha hit 43 runs. How many runs did they hit altogether?		$+\frac{59}{43}$ 102
Indri likes to watch Steven play soccer. His team has already scored 56 goals this season. How many more do they need to reach 80?		- <u>56</u> 24
Add across and down to find the total vorked it out. 16 31 47 23 35 58 39 66 Which strategy do you prefer to use?	s. Write c	lown how you

ISBN: 978-0-521-74535-2

© Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

※ ×

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

Number and Place Value

Regrouping using bridging strategies

XX

Photocopying is restricted under law and this material must not be transferred to another party.

More mental strategies

Another way to add quickly is to look for 2 numbers that add to a **multiple of 10**.

4 + 8 + 6 = 14 + 6 + 8= 20 + 8 = 28 Addends are the numbers to be added together to find the sum.

Circle the 2 numbers which add to make a multiple of 10 to help you complete these number sentences.

$\alpha (7) + 9 + (3) = -29$	b $1 + (5 + 5) = 21$	\bigcirc \bigcirc \bigcirc + 7 + \bigcirc = $_27$
$\frac{d}{23} + 7 + 4 = \frac{34}{2}$	<u> </u>	<u> 11 +62+8= 81</u>

2

In a game of darts each player had 3 shots. Who scored the highest total?

Player	Dart 1	Dart 2	Dart 3	Total
Margarita	17	3	24	44
Valerie	33	5	7	45
Theo	26	11	9	46

Partitioning (compensation strategy)

Round to the nearest 10 and then add or subtract the amount that was rounded.

63 + 29 = 63 + 30 is 93, subtract 1, to obtain 92 27 + 18 = 27 + 20 is 47, subtract 2, to obtain 45 54 - 39 = 54 - 40 is 14, add 1, to obtain 15

Explain how you could use the partitioning (compensation strategy) to solve these.

α 25 + 19 =	44
b 43 + 29 =	72
c 35 + 18 =	53
d $43 - 19 = 10$	24
e 67 - 29 =	38

Pretend the 9 key on your calculator is broken. Write how you could use your calculator to find the answer to this number sentence.

24 + 39 = 63 24 + 38 + 1 = 63

Number and Place Value 1

Solve problems

1

2

Solve these food addition and subtraction problems. Use a calculator to check your solution.

*

	Problem	Working out
α	Gina works at the circus. She cooked 28 hotdogs on Saturday and 59 hotdogs on Sunday. How many did she cook over the weekend?	+ <u>59</u> <u>28</u> <u>87</u>
b	Sue loves chocolate. She bought a block with 64 pieces. If she has already eaten 19 pieces, how many pieces does she have left?	$-\frac{64}{19}$
С	How much does the meal cost if the entrée is \$18 and the main meal is \$39?	$+\frac{39}{18}$
d	This bunch of grapes has 85 grapes. If Ruth eats 28 grapes at breakfast time, how many grapes will be left?	$-\frac{58}{28}$

Write a number problem for each of the following.

	Problem	Problem
α	24 34 44 45	24 + 25
b	61 66 76 86 96	96 — 35
С	The answer is 56.	19 + 37

In 148, the 3 digits add to 13. List other numbers between 100 and 200 that have digits that add to 13.

139	175
157	184
166	193

20 Number and Place Value

1

In a game of Snakes and Ladders you climb ladders and slide down snakes.

100	99	98	97	96	95	94	93	0092	91
81	82	83	84	85	86	87	88	89	90
80	79	78	77	76	75	74	73	72	71
61	7 62	63	64	65	66	67	68	69	70
60	59	58	57	56	55	54	53	52	51
41	42	43	44	45	0 46	47	48	49	50
40	39	38	37	36	35	34	33	32	31
21	22	23	24	25	26	27	28	29	30
20	19	18	17	16	15	14	13	12	11
1	2	3	4	5	6	7	8	9	10

Using different mental strategies, calculate the value of each snake and each ladder. The first one has been done for you.

	Working
blue ladder	68 - 49 = 68 - 50 + 1 = 18 + 1 = 19
red ladder	97 - 26 = 71
green ladder	44 - 3 = 41
blue snake	46 - 13 = 33
red snake	79 - 20 = 59
green snake	92 - 51 = 41

Play a game of Snakes and Ladders and write about the numbers you landed on when you slid down snakes and climbed ladders.

Number and Place Value **21**

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

The equals sign

1

Terry is a bricklayer. Can you help him fill up the brick wall with different ways to make 20? Try using different operations $(+, -, \times \text{ and } \div)$. The first two have been done for you.

8	4 >	× 5	22	- 2	10	× 2	40	÷ 2	12	+ 8	
0	23 - 3	100	÷ 5	40 -	- 20	8 +	- 12	5 +	15	25 — 5	
	6 +	- 14	3 +	- 17	13	+ 7	27	- 7	45	- 25	
	12 + 8	500	÷ 25	1 +	- 19	32 -	- 22	100	- 80	10 + 10	
	1010	- 990	320 -	- 300	28	- 8	4 +	- 16	7 +	- 13	
	120—100	90 -	- 70	82 -	- 62	11	+ 9	16	+ 4	52-32	
	66 -	- 46	91 -	- 71	55 -	- 35	24	- 4	31 -	- 11	

Use the equals sign to show the relationship between some of the above number sentences, e.g. $4 \times 5 = 22 - 2$

 $10 \times 2 = 40 \div 2$, 13 + 7 = 27 - 2

Scales will balance if both sides are equal. Both sides of a number sentence are also equal. The equals sign is also used to record equivalent number relationships, e.g. 4 + 7 = 12 - 1. The equals sign (=) means 'is the same as'.

*

Fill in the missing numbers to make the scales balance. Write the answer below the scales to make it easier.

22 Number and Place Value

2

Equivalent number sentences

2

Fill in the missing numbers to make the scales balance. Write the answer next to the scales to make it easier.

Zoe wrote some equivalent number sentences, but not all of them are correct. Tick (1) those which are correct and cross (1) those which are incorrect.

The algorithm

An algorithm is the formal way of setting out a mathematical	43
problem to work out the answer. This is an addition algorithm.	+51
	Q /

*

1

Complete these addition algorithms. The first one has been done for you.

Complete these subtraction algorithms. The first one has been done for you.

3

2

Solve these problems by using an algorithm.

	Problem	Is it addition or subtraction?	Algorithm	Solution
α	Emmy collects toy cars. She has 43 green cars and 16 red cars. How many cars does she have altogether?	addition	43 + 16	59
b	Andrew had 39 candles on his cake. He blew out 15. How many are still alight?	subtraction	39 - 15	24
С	Dom's mobile phone bill is \$32 and Lizza's is \$55. What is the total cost of both bills?	addition	32 + 55	87

24 Number and Place Value

Trading in addition

	Т	0
	2	8
+	3	4
	6	2

8 ones plus 4 ones equals 12 ones.

Trade 10 ones for 1 ten. Two ones remain.

Record 2 in the ones column and 1 ten in the tens column.

Т

1

5

7

5

3

Ο

8

6

4

5

5

d

+

+

Add 2 tens plus 3 tens plus one ten to get 6 tens.

Record 6 in the tens column.

Complete these addition algorithms. The first one has been done for you.

Ο

3

9

2

9

3

2

Τ

13

3

+

1

6

2

9

0

Ο

8

4

Т

2

3

b

+

In the lucky dip stall at the carnival, you need to catch two fish and add their numbers together to see if you have won a prize. 9 0 9 4 10 2 LUCKY DIP Score Prize 61 kite 66 book 73 ball 93 camera other scores no prize

Т

2

3

6

6

2

+

 \mathbf{k}

+

Ο

7

7

4

7

7

Τ

'4

3

8

6

3

+

Ο

7

4

1

4

8

a Fill in the table below.

Fish caught	Algorithm	Prize
blue fish and purple fish	27 + 46 = 73	ball
green fish and yellow fish	39 + 48 = 87	no prize
brown fish and yellow fish	13 + 48 = 61	kite
b What two f win the ca	ish need to be caught to mera? Show your working.	9 + 54 = 93
win the ca	mera? Show your working. 3	9 + 54 = 93

Number and Place Value 25

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

Trading in subtraction

1

Take 9 ones from 6 ones

Trade I ten from the tens column (5 tens becomes 4 tens). Move it to the ones column to make 16 ones.

キャー

16 ones take away 9 ones is 7 ones.4 tens take away 1 ten is 3 tens.

Complete these subtraction algorithms. The first one has been started for you.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$g \ {}^{t}\!\mathcal{S} \ {}^{t}\!6 \mathbf{h} \ {}^{5}\!\mathcal{S} \ {}^{t}\!2 \mathbf{i} \ {}^{b}\!\mathcal{T} \ {}^{t}\!0 \mathbf{j} \ {}^{t}\!\mathcal{S} \ {}^{t}\!5 \\ - \frac{2}{2} \frac{9}{7} - \frac{3}{2} \frac{7}{5} - \frac{5}{2} \frac{2}{1} - \frac{3}{8} \frac{6}{1} \frac$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 How far is it from a Port Gregory to Pitt Town? 35 b Camel Rocks to Stoneville? 49 	Port Gregory 16 Camel Rocks 34 Pitt Town 51 Stoneville 83
C Which two towns are the closest together? Show all your working. Camel Rocks and Pitt Town.	
Students' answers will vary.	

26 Number and Place Value

3-digit addition and subtraction

Complete these addition algorithms. The first one has been done for you.

α	Η	Т	0	b	Η	Т	0	С	Η	Т	0	d	Η	Т	0	е	Η	Т	0
	3	6	2		7	1	2		6	9	1		5	5	4		3	9	0
+	2	1	7	+	1	6	4	+	1	0	4	+	3	2	4	+	4	0	2
	5	7	9		8	7	6		7	9	5		8	7	8		7	9	2
ſ	3	2	1	g	8	5	5	h	5	3	9	i	7	0	0	j	8	1	2
+	3	2	3	+	1	1	4	+	3	3	0	+	2	9	6	+	1	4	7
	6	4	4		9	6	9		8	6	9		9	9	6		9	5	9

Complete these subtraction algorithms. The first one has been done for you.

α	Η	Т	0	b	Η	Т	0	C	Η	Т	0	d	Η	Т	0	е	Η	Т	0
	4	7	6		3	4	9		4	8	7		5	5	2		3	0	6
_	1	2	5	_	2	1	6	_	3	1	6	_	1	5	1	_	2	0	3
	3	5	1		Ι	3	3		Ι	7	Ι		4	0	Ι		Ι	0	3

Create two different addends for each sum.

α	Η	Т	0	b		н	Т	0	С	Η	Т	0	d	Η	Т	0	е	Η	Т	0
	Ι	3	2			Ι	Ι	Ι		2	3	2		4	8	1		Ι	0	4
+	2	2	5	+	-	1	5	8	+	2	3	2	+	3	0	8	+	Ι	5	6
	3	5	7			2	6	9		4	6	4		7	8	9		2	6	0

4

3

1

2

The answer is 135. Construct different subtraction number sentences to get this answer.

Students' answers will vary.

Number and Place Value 27

3-digit addition and subtraction with trading

Complete these addition algorithms with trading in the ones. The first one has been done for you.

α	Η	Т	0	b	Η	Т	0	С	Η	T	0	d	Η	Т	0	е	Η	T	0
	2	¹ 3	5		3	' 4	7		6	0	9		2	17	6		3	13	7
+	3	4	8	+	2	1	6	+	3	5	7	+	6	1	6	+	5	4	3
	5	8	3		5	6	3		9	6	6		8	9	2		8	8	0

Complete these subtraction algorithms with trading in the ones. The first one has been done for you.

α	Η	Т	0	b	Η	Т	0	С	Η	Т	0	d	Η	Т	0	е	Η	Т	0
	4	6 7	¹ 4		5	5/6	7		3	⁷ 8	2		4	67	1		6	⁸ Å	0
_	2	1	8	_	1	2	9	_	1	3	5	_	2	5	6	_	3	2	3
	2	5	6		4	3	8		2	4	7		2	Ι	5		3	6	7

3

28

2

1

This table shows the height of some of the world's tallest buildings.

Building	Height (m)	La N	ers		Dg	a Tower
Taipei 101 Tower	509		s Tow	wer	Buildi	Chin
Petronas Towers	452	lipei –	etrona	ears To	Mao	ank of
Sears Tower	442		L C	×.) Li	ä
Jin Mao Building	421					
Bank of China Tower	369					
a What is the total h Taipei 101 Tower o	eight of and Sears	s Tower?		951 m		
b What is the height Petronas Towers a	differen nd Jin M	ce between ao building?		3 m		
C Which 2 buildings	have a t	total height of	790 m	1?		

Jin Mao Building Bank of China Tower

Find out which country each tower is located in.

Number and Place Value

Multiplication and division using arrays

1

Make an array using eight counters. Can you make it another way? Show the different ways in the box below.

Students' answers will vary.

An array is a group of objects arranged in rows and columns.

For each array, you can write four different number sentences: two multiplication and two division.

$$2 \times 3 = 6$$
 $6 \div 3 = 2$
 $3 \times 2 = 6$ $6 \div 2 = 3$

3

2 Write two multiplication and two division number sentences for each array.

Array	Number sentence
	2 × 5= 10
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$5 \times 2 = 10$
0	$10 \div 5 = 2$
	$10 \div 2 = 5$
	6 × 4 = 24
	4 × 6 = 24
	$24 \div 6 = 4$
	$24 \div 4 = 6$

Match the pairs.

 $8 \times 2 = 16 \qquad 8 \div 4 = 2$ $4 \times 4 = 16 \qquad 16 \div 2 = 8$ $2 \times 4 = 8 \qquad 16 \div 4 = 4$

Add more golf balls to the array to make this multiplication fact true: 4 × 5 = 20

Division from multiplication

1

Write two multiplication and two division number sentences for this array of chocolates in a box.

3 × 4	12 ÷ 4
4 × 3	12 ÷ 3

2 You need to fill a box with 24 chocolates. Draw all the possible arrays of chocolates below. Write the multiplication and related division number sentences for each array.

```
24 \times 1
        24 ÷ 1
 1 \times 24
        24 ÷ 24
000000000000
12 \times 12 \quad 24 \div 2
 2 \times 12 24 \div 12
00000000
00000000
0000000
 8 \times 3
        24 \div 3
 3 \times 8
        24 \div 8
000000
000000
000000
000000
 6 \times 4
       24 ÷ 4
 4 \times 6
        24 \div 6
```


Number and Place Value

Solve problems using arrays

Draw an array to help you solve these problems.

1

	Problem	Array	Number sentence and answer
α	There are 4 fish in each tank. How many fish are there in 3 tanks?		4 × 3 = 12
b	There are 3 balls in each box.		
	How many balls are there in 5 boxes?		$3 \times 5 = 15$
С	There are 16 sheep in 4 paddocks.		
	How many sheep are there in each paddock?		$16 \div 4 = 4$
d	There 21 girls in 3 netball teams.		
	How many girls are there in each team?		$21 \div 3 = 7$
2 a	Write a word problem to match 2 Students' answers will vary.	× 7 = 14	
b	Write a word problem to match 1	8 ÷ 6 = 3	
	- Students' answers will vary.		
3 Fill nur	in the missing number or symbol 1 nber sentence.	for each r	elated
α	3 × 7 = 21, so 21 ÷ 7 = 3 b 4	× 6 = 24,	so $24 \div 6 = 4$
С	$5 \times 5 = 25$, so $25 \div 5 = 5$ d 7	÷ 1 = 1	$7, \text{ so } 7 \div 1 = 7,$
e	$8 \times 5 = 40$, so $40 \div 5 = 8$	10 × 2 =	20, so $20 \div 2 = 10$
4 Use	the numerals 4, 9 and 36 to write	four relat	ed multiplication
and	d division facts. $\frac{4 \times 9}{2} = 36$, 9×10^{-10}	4 = 36,	36 ÷ 4 = 9,
Use	$36 \div 9 = 4$ your calculator to make up some harder related n	umber senten	ces.
e.g	. 6 × 15 = 90 90 ÷ 15 = 6		
		Num	ber and Place Value

ISBN: 978-0-521-74535-2 Students of Gaess Weeks 2016 vary. Photocopying is restricted under law and this material must not be transferred to another party.

The division sign

Use the arrays to solve these division questions. Circle each share.

$$15 \div 3 = 5$$

2 Fill in the missing numbers.

 $12 \div 6 = 2$ α 2) 12 $20 \div 5 = 4$

5)20

32

X

3

1

Use the ÷ and) symbols to solve these zoo problems. Use counters or draw a diagram to help you.

3 21

	Problem	÷)
α	An elephant eats 18 carrots in 2 hours. How many carrots does the elephant eat in one hour?	18÷2=9	2)18
b	There are 15 monkeys in 5 cages. How many monkeys are there in each cage?	15 ÷ 3 = 5	3)15
С	At the giraffe enclosure, Louise counted 28 legs. How many giraffes are there?	28 ÷ 4 = 7	4) <u>28</u>

Write the related multiplication fact for each of the above problems. The first one has been done for you.

 $\alpha 2 \times 9 = 18$ b $3 \times 5 = 15$ **c** $4 \times 7 = 28$ Write down one division and one multiplication number fact that you can see on this number line.

32 Number and Place Value

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

1

2

α

Is the problem to be solved with multiplication or division? Work out the answer and record the strategy you used. The first one has been done for you.

		Prob	olem				Working out/strategy							
	a A ro carri onto man the r	ller cc lages. each ly peo ride at	oaster If 4 p carri ple c one	has eop age an g time	8 le fit how 10 or ?	7 ; 1	I kn so,	10W 4 × 8 ×	thc 4 = 4 = = =	xt 16 dov 16 32	uble + 1	e 4 : 6	× 4	
	b A bo 2 pe peor	oat ca ople. 1 ole in 1	n hole How 1 9 boc	d man tts?	Y			9	' ×	2	=	18		
297493 297493	C If it of man for \$	If it costs \$6 per ride, how many rides can you get for \$30? $30 \div 6 = 5$												
	d Ther each how there	d There are 6 clowns. If each clown has 8 balls, how many balls are there altogether?						6	• ×	8	=	48		
	e A co there the f cars	e A car holds 3 people. If there are 24 people on the full ride, how many cars are there? $24 \div 3 = 8$												
Can you crack	the cod	e?		I	3	4 D	5 F	8	10 N	12	20	28 R	40	72 V
α 8 ÷ 2 = 4	b 8	÷ 4	= 2	C	72	÷	9 =	8	d	16	v	2 =	8	
e 6 × 4 = 2	24 f 5 ×	5	= 25	g	7 ÷	7 =	1		h	60) ÷	6 =	10)
i 20 ÷ 4 =	5 j 18 ·	÷ 6 =	3	k	12	÷	4 =	3	1	10) ÷	=	10)
$m 2 \times 10 = 20$	n 5 ×	8 =	40	0	7 ×	5	=	35	p	4	× 7	=	28	
	4	g h	n i		j		k	1	m	r	n	0	p	
b c d e	I													

Solve problems

1

Choose 4 numbers between 0 and 9 and complete each multiplication square. Choose different numbers each time. The first one has been done for you.

*

4	6	24	4	3	12	9	I	9	8	2	16
3	5	15	Ι	2	2	3	5	15	0	Ι	0
12	30		4	6	-	27	5		0	2	-

2

Write and solve a word problem to suit each number sentence.

3

In the game of rugby league a try is worth 4 points, a goal 2 points and a field goal 1 point. Add the scores in the table below. Show your working.

	Top Dog	S		Cool Ca	ts
4 tries	6 goals	2 field goals	5 tries	3 goals	0 field goals
16	12	2	20	6	
16	+ 12 + 2	= 30		20 + 6 =	26

Who won? <u>Top dogs</u> Show different ways to score 12 points in a game of rugby league. Students' answers will vary.

34 Number and Place Value

Division problems

There are 24 cows that need to be milked. Each day a different number of farmers will milk the cows. In the table below, write number sentences to show how many cows each farmer might milk each day.

	Day	Drawing	Number sentence
α	On Monday 3 farmers will milk the cows.		24 ÷ 3 = 8
b	On Tuesday 2 farmers will milk the cows.		24 ÷ 2 = 12
С	On Wednesday 6 farmers will milk the cows.		$24 \div 6 = 4$
d	On Thursday 4 farmers will milk the cows.		24 ÷ 4 = 6
е	On Friday only 1 farmer will milk the cows.		24 ÷ 1 = 24

2

1

a Place 12 sheep into the paddock so that each sheep has the same amount of space. b Place 18 pigs into the pen so that each pig has the same amount of space.

Number and Place Value

Cambridge University Press

1

Use counters to cover the first 10 multiples of 1. Look at the pattern. Now cover the first 10 multiples of 2. Look at the pattern. Continue this for the multiples of 3, 4, 5, 6, 7, 8 and 9.

*

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

a Which multiples form a diagonal pattern? <u>3.</u>

b Which multiples form a horizontal pattern?_____ /

Which multiples form a vertical pattern? 🔄

2 Help the bees walk across the hexagons by following a pathway. Use a blue pencil to mark the pathway for the multiples of 6 and a red pencil for the multiples of 7.

36 Number and Place Value

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party. 2, 5

Halves, quarters and eighths

If you divide a shape into 2 equal parts, each part is called a **half**. If you divide a shape into 4 equal parts, each part is called a **quarter**. If you divide a shape into 8 equal parts, each part is called an **eighth**.

Show different ways to cut these squares in half. Colour one half of each square.

Show different ways to cut these squares in eighths. Colour one eighth of each square.

				Γ
				L

square.

b Show different ways to cut these squares in quarters.

Colour one quarter of each

10

Tick the circles that show one-quarter shaded.

Circle the rectangles that show one-eighth shaded.

4

3

2

Draw a line to match the fraction to its name and picture.

Fractions and Decimals

Cambridge University Press

More halves, quarters and eighths

Shade the fractions.

XX

2

3

1

Order the fractions from smallest to largest in each row.

<u>2</u> 4	<u>3</u> 4	$\frac{1}{4}$	$\frac{4}{4}$	$\frac{1}{4}$ $\frac{2}{4}$ $\frac{3}{4}$ $\frac{4}{4}$
<u>1</u>	<u>4</u>	<u>3</u>	<u>2</u>	$\frac{1}{8}$ $\frac{2}{8}$ $\frac{3}{8}$ $\frac{4}{8}$
8	8	8	8	
<u>2</u>	<u>7</u>	<u>3</u>	<u>7</u>	$\frac{2}{8}$ $\frac{3}{8}$ $\frac{7}{8}$ $\frac{7}{8}$
8	8	8	8	

If the bottom numbers of the fractions are the same, look at the top number to help you order them.

What fraction of this picture is:

What did you notice? The two fractions equal a whole.

Divide this flag into quarters. Design an interesting flag making each quarter a different colour.

Answers will vary

Divide this flag into eighths. Colour $\frac{1}{2}$ of the flag blue, $\frac{1}{4}$ green, $\frac{1}{8}$ red and $\frac{1}{8}$ black.

|--|

38 Fractions and Decimals

the larger in each pair.

Fractions and Decimals

Cambridge University Press

Fractions and Decimals

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party.

Fractions and Decimals 41

Fifths, tenths and hundredths

If you divide a shape into 5 equal parts, each part is called one fifth $(\frac{1}{5})$. If you divide a shape into 10 equal parts, each part is called one tenth $(\frac{1}{10})$. If you divide a shape into 100 equal parts, each part is called one hundredth $(\frac{1}{100})$.

Shade the fractions.

 $\frac{1}{100}$

<u>100</u> 100

2

Write what fraction would need to be shaded for the whole shape $\frac{6}{10}$ 65 to be shaded. a $\frac{2}{5}$ b 100 C 100

Order the fractions from smallest to largest in each row.

 $\frac{1}{5}$ of 20 =

<u>2</u>	<u>4</u>	<u>1</u>	<u>3</u>	$\frac{1}{5}$ $\frac{2}{5}$ $\frac{3}{5}$ $\frac{4}{5}$
5	5	5	5	
<u>1</u>	<u>6</u>	<u>10</u>	<u>8</u>	$\frac{1}{10} \frac{6}{10} \frac{8}{10} \frac{10}{10}$
10	10	10	10	
<u>14</u>	<u>4</u>	<u>1</u>	<u>41</u>	$\frac{1}{100} \frac{4}{100} \frac{14}{100} \frac{41}{100}$
100	100	100	100	

С

4

4

α

3

Circle one-fifth of these collections.

b

Fractions and Decimals

one-fifth of 10 = 2

ISBN: 978-0-521-74535-2 © Greg Weeks 2012 Photocopying is restricted under law and this material must not be transferred to another party. 3

 $\frac{1}{5}$ of 15 = ____

43

Fractions and Decimals

Decimals and money

Show the following amounts on each hundredths square and write the amount in decimal form. The first one has been done for you.

There are 100 cents in one dollar. 1 = 100c30 cents = $\frac{30}{100}$ of a dollar = 30 hundredths of a dollar = 0.30

Complete these tables showing the amounts in dollars and cents and in decimal form.

Cents	Fraction of \$1	Decimal form		Cents	Decimal form
20c	<u>20</u> 100	\$0.20		140c	\$1.40
60c	$\frac{60}{100}$	\$0.60		260c	\$2.60
75c	$\frac{75}{100}$	\$0.75		375¢	\$3.75
15¢	$\frac{15}{100}$	\$0.15		550c	\$5.50
5 ¢	<u>5</u> 100	\$0.05		995¢	\$9.95
250	60c		85c)	175c

2

1

	995¢	\$9.95
Co)	175c>
5	6 7 8	9 10 GL

Write the value of each in decimal form. The first one has been done for you.

pencil <u>\$0.25</u> book <u>\$0.60</u> ruler <u>\$0.85</u> glue stick <u>\$1.75</u>

Financial Maths

Change please

	Down Unde	er Tucker at Ri	ipper Prices		
Vegemi toast	te lamington	meat pie	pavlova	BBQ prawns	
\$1.45	\$2.50	\$3.75	\$6.00	\$8.95	
Calculo	ite how much ch	nange you wou	ıld get from \$	5 if you bought	
ααα	xmington. \$2.	.50 b	a meat pie.	\$1.25	
Calculo	te how much ch	ange you wou	ld get from \$1	0 if you bought	
α Veq	gemite toast	\$8.55 b	BBQ prawn	s. <u>\$1.05</u>	
Use a co	Use a calculator to find the total cost of buying all 5 items\$22.65				
How m	uch change wou	ıld you get fror	n \$50? <u>\$27</u> .	35	
Calcula each m if you g change Write yo under e	tte the cost of eal at Ketut's et the following from \$20. our answers each menu item.	Ketut's	s Indonesian	Takeaway	
α \$4. chi	05 change for cken satav	chicken satay	gado gad	o nasi goreng	
b \$8.	65 change for	\$15.95	\$11.35	\$6.75	
c \$13	3.25 change for si goreng				

5 Siobhan bought a squid curry, spring rolls and fish cakes at Yum Tum's Thai. She paid \$30 and got \$1.25 change. Show how much she might have paid for each item.

> Use the internet to find out which two metals the Australian five-cent coin is made from.

Financial Maths

Cambridge University Press

45

ISBN: 978-0-521-74535-2

© Greg Weeks 2012

Photocopying is restricted under law and this material must not be transferred to another party.

Calculations using money

- Bus fares are calculated by the number of sections you travel.
 - a Rona likes to catch the bus around the city. How much would it cost her to travel:

5 sections?	\$3.00	
8 sections?	\$4.00	
20 sections?	\$5.80	
How many a	onts is $$1.802$	18

Bus fare	Child
3 to 5 sections	\$3.00
6 to 9 sections	\$4.00
10 to 15 sections	\$4.80
16 + sections	\$5.80

- b How many cents is \$1.80? _______
- C How many cents is \$3.00? <u>300</u>
- d How much change would Rona get from \$5 if she travels:
 - i 9 sections? <u>\$1</u> ii 15 sections? <u>\$0.20</u> iii 1 section? <u>\$4.10</u>
- e It costs Rona \$1.80 to travel 2 sections. How much more does it cost her to travel 3 sections? Show how you worked mentally.

2 Help fill the fridge. a On the top shelf draw items that total \$2.00. b On the middle shelf draw items that total \$4.50. c On the bottom shelf draw 3 items that total \$10.00. Item Cost cake, can of drink \$0.30 apple \$0.50 banana Zapples, can of can of drink \$0.90 drink, juice \$1.10 cake juice, cheese, banana \$1.20 sauce \$1.80 pineapple juice \$3.00 \$6.50 cheese

Financial Maths

Shopping

- Look at the prices on the list of groceries and answer the questions.
 - α Which item is the cheapest? <u>lemon</u>
 - b Which item is the most expensive? <u>broccoli</u>
 - What is the difference in price between the cheapest and most expensive item? <u>\$2.50</u>

		Item	Cost each
		apple (green)	\$0.75
		apple (red)	\$0.60
14 62 6 2 T		banana	\$0.70
		bread	\$1.50
		broccoli	\$2.85
	VANNI	capsicum	\$1.10
	IANNI	eggs	\$2.55
		juice	\$2.75
		lemon	\$0.35
MATT		milk	\$1.90
1 mm		pasta	\$2.00
		water	\$1.20

2 Matt and Yanni bought a bag of groceries each. Find the total cost of the groceries you can see in each bag. Show all your working. Use a calculator to help you.

bread = \$1.50 banana = \$2.10(\$0.70 = 3) eggs = \$2.55 milk = \$1.90 capsicum = \$1.10 broccoli = \$2.85 pasta = \$2.00	bread = \$1.50 pasta = \$2.00 juice = \$2.75 water = \$1.20 apple(green) = \$0.75 apple(red) = \$0.60 lemon = \$0.35 banana = \$2.10(\$0.70 × 3)
Matt \$14.00	Yanni \$ /1.25
Whose groceries cost more?	Matt
The total of both bags is \$ 25 How much change would they from \$50 if they paid together?	.25 get Make up a problem of your own using the shopping list. Ask a friend to solve it.
₽∠4.13	——— Financial Maths 47

Cambridge University Press

Money relationships

1

Convert from dollars and cents to cents and vice versa.

	dollars and cents	cents	
α	\$3.75	375	
b	\$8.05	805	
С	\$7.65	765c	

	dollars and cents	cents
1	\$9.30	930¢
	\$6.05	605c
	\$15.50	1550¢

2

Complete the table by counting the money and writing the amount in each column. The first one has been done for you.

Not all countries of the world use dollars and cents. Many countries use different denominations and divisions to that of Australia.

dollars Ind cents	\$5.00	\$3.85	\$5.60	\$26	\$80
cents	500c	385	560	2600	8000

3 The Japanese yen (¥) is the official currency of Japan. In Japan, coins and notes have the following values.

coins ¥1, ¥5, ¥10, ¥50, ¥100, ¥500

banknotes ¥1000, ¥2000, ¥5000, ¥10000

How many ¥100 coins are needed to make ¥1000? _________

- b How many ¥500 coins are needed to make ¥1000? <u>2</u>
- c How many ¥5 coins are needed to make ¥1000? ______
- The Indonesian rupiah (Rp) is the official currency of Indonesia. How many Rp5000 notes are needed to buy

48 Financial Maths